Supporting Information

Amine-assistedExfoliationandElectricalConductivityModulationtowardFew-LayerFePS3Nanosheets for Efficient HydrogenEvolution

Zhi Yu¹, Jing Peng¹, Yuhua Liu¹, Wenxiu Liu¹, Haifeng Liu², Yuqiao Guo^{1*}

¹Hefei National Laboratory for Physical Sciences at the Microscale, and School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
E-mail: <u>guoyq@ustc.edu.cn</u>
²Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China

Table of Contents

Figure S1. SEM image of the bulk FePS₃.

Figure S2. AFM images for different nanosheets.

Figure S3. Dark field image and the corresponding EDS mapping of elements images of different FePS₃ nanosheets.

Figure S4. High-resolution XPS spectra of Fe 2p for different samples.

Figure S5. High-resolution XPS spectra of P 2p for different samples.

Figure S6. High-resolution XPS spectra of S 2p for different samples.

Figure S7. High-resolution XPS spectra of O 1s for different samples.

Figure S8. Valley-shaped behavior in temperature dependence of HER catalytic activity.

Figure S9. Current-voltage (I-V) characteristic curves for different FePS₃ samples in the sweeping voltage from -2 to 2 V and conductivity versus temperature plot.

Figure S10. Electrochemical double layer capacitance (C_{dl}) measurements.

Figure S11. The plots showing the extraction of the C_{dl} for different FePS₃ samples.

Table S1. Atomic percentage extracted from EDS analysis

Table S2. Peak area ratio of Fe^{3+}/Fe^{2+} from Fe 2p XPS spectra.

Table S3. Atomic percentage extracted from XPS analysis

Table S4. The average valence of Fe, P and S and calculated chemical component of different samples.

Table S5. The charge transfer resistance (R_{ct}) from EIS.

Table S6. Comparison on HER catalytic performance of recently reported FePS₃.

Figure S1. SEM image of the bulk FePS₃.

Figure S2. AFM images of nanosheets for (a) FePS₃-90, (b) FePS₃-120, (c) FePS₃-140 and (d) FePS₃-160.

Figure S3. Dark field image and the corresponding EDS mapping of elements images of the FePS₃ nanosheets for (a) FePS₃-90, (b) FePS₃-120, (c) FePS₃-140 and (d) FePS₃-160.

Figure S4. High-resolution XPS spectra of Fe 2p for different samples. (a) bulk, (b) FePS₃-60, (c) FePS₃-90, (d) FePS₃-120, (e) FePS₃-140 and (f) FePS₃-160.

Figure S5. High-resolution XPS spectra of P 2p for different samples. (a) bulk, (b) FePS₃-60, (c)

FePS₃-90, (d) FePS₃-120, (e) FePS₃-140 and (f) FePS₃-160.

Figure S6. High-resolution XPS spectra of S 2p for different samples. (a) bulk, (b) FePS₃-60, (c) FePS₃-90, (d) FePS₃-120, (e) FePS₃-140 and (f) FePS₃-160.

Figure S7. High-resolution XPS spectra of O 1s for different samples. (a) bulk, (b) FePS₃-60, (c)

FePS₃-90, (d) FePS₃-120, (e) FePS₃-140 and (f) FePS₃-160.

Figure S8. Valley-shaped behavior in temperature dependence of HER catalytic activity.

Figure S9. Current-voltage (I-V) characteristic curves for different FePS₃ samples in the sweeping voltage from -2 to 2 V and conductance versus temperature plot (inset).

Figure S10. Electrochemical double layer capacitance (C_{dl}) measurements. Cyclic voltammetry (CV) measurements from 0.1 V to 0.2 V (vs. RHE) of (a) bulk and nanosheets for (b) FePS₃-60, (c) FePS₃-90, (d) FePS₃-120, (e) FePS₃-140 and (f) FePS₃-160.

Figure S11. The plots showing the extraction of the C_{dl} for different FePS₃ samples.

				-	
	60 °C	90 °C	120 °C	140 °C	160°C
Fe %	16.53	18.22	18.02	19.32	20.83
Р %	17.16	19.58	19.01	19.72	19.09
S %	51.76	52.78	48.69	49.64	33.21

Table S1. Atomic percentage extracted from EDS analysis

Table S2. Peak area ratio of Fe^{3+}/Fe^{2+} from Fe 2p XPS spectra

	bulk	60°C	90°C	120°C	140°C	160°C
S(Fe ³⁺)/S(Fe ²⁺)	0.49	0.54	0.73	0.89	1.25	5.09

Table S3. Atomic percentage extracted from XPS analysis

	bulk	60 °C	90 °C	120 °C	140 °C	160°C
Fe %	13.43	9.10	9.22	9.14	9.19	8.18
Р%	14.50	9.74	9.50	9.78	9.93	7.85
S %	41.63	28.03	25.26	23.76	22.52	12.27
0 %	5.83	13.65	13.92	14.38	14.85	39.71

Table S4. The average valence of Fe, P and S and calculated chemical component of different

samples.

	average	average	average valence	calculated chemical
	valence of Fe	valence of P	of S	component
bulk	+2.33	+4.08	-2.00	$FeP_{1.08}S_{3.10}O_{0.27}$
FePS ₃ -60	+2.35	+4.15	-1.75	$FeP_{1.07}S_{3.08}O_{0.70}$
FePS ₃ -90	+2.42	+4.16	-1.79	$FeP_{1.03}S_{2.74}O_{0.90}$
FePS ₃ -120	+2.47	+4.12	-1.82	$FeP_{1.07}S_{2.60}O_{1.07}$
FePS ₃ -140	+2.56	+4.15	-1.82	FeP _{1.08} S _{2.45} O _{1.29}
FePS ₃ -160	+2.84	+4.32	-1.61	$FeP_{0.96}S_{1.50}O_{2.29}$

Table S5. The charge transfer resistance (R _{ct}) from EIS.	

	bulk	60°C	90°C	120°C	140°C	160°C
$R_{ct}(\Omega)$	1185	266	212	113	222	432

Table S6. Comparison on	HER catalytic performance	of recently reported FePS ₃ .
-------------------------	---------------------------	--

Sample	η (mV)	Tafel Slope (mV/dec)	Electrolyt e	Synthetic Methods	Reference
FePS ₃ -120 nanosheets	241±7	93.7±3.5	0.5M H ₂ SO ₄	Amine-assisted exfoliation	This work
sonicated FePS ₃ crystal	>950	~200	0.5M H ₂ SO ₄	Liquid sonication in deionized water	ACS applied materials & interfaces, 2017, 9 , 12563-12573.
FePS ₃ nanosheets	>350	109	1M KOH	Liquid sonication in DMF	ACS Catalysis, 2017, 7, 8549- 8557.
FePS ₃ @rGO	108	54	0.5M H ₂ SO ₄	Liquid sonication and hydrothermal method	ACS Energy Letters, 2016, 1, 367-372.