Electronic Supporting Information

High-pressure induced a stable phase of Li₂MnSiO₄ for an effective poly-anion

cathode material from simulations

Shuo Wang^a, Junyi Liu^a, Yu Qie^a, Sheng Gong^b, Cunzhi Zhang^a Qiang Sun^{c,d,a,*}, and Puru Jena^e ^a Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China

^b Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

^c Center for Applied Physics and Technology, Peking University, Beijing 100871, China

^d Key Lab of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing 100871, China

^e Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA

Structural information

Figure S1. Geometry structures of different Li_2MnSiO_4 with space group of (a) *Cc*, (b) *Pnma* and (c) *Pmn21*.

Structural Stability

Figure S2. The snapshots of structural geometry of $Cc \operatorname{Li}_2 \operatorname{MnSiO}_4$ extracted from AIMD simulation at 500K.

Symmetry	a=b (Å)	c (Å)	α=β(°)	γ(°)
Сс	6.00	4.94	108.79	58.16
Atom	x	у	Z	Sites
Lil	0.84	0.61	0.86	2
	0.61	0.84	0.36	
Li2	0.37	0.61	0.84	2
	0.61	0.37	0.34	
Mn	0.11	0.84	0.33	2
	0.84	0.11	0.83	
Si	0.37	0.10	0.87	2
	0.10	0.37	0.37	
01	0.01	0.69	0.59	2
	0.69	0.01	0.09	
02	0.43	0.24	0.64	2
	0.24	0.43	0.14	
03	0.24	0.03	0.11	2
	0.03	0.24	061	
O4	0.46	0.79	0.65	2
	0.79	0.46	0.15	

Table S1. Lattice parameters of primitive cell of predicted Li_2MnSiO_4 with space group of *Cc* after removing the pressure.

Li _{2(1-x)} MnSiO ₄	x=0.00	x=0.25	x=0.50	<i>x</i> =0.75
Mn1	+1.55	+1.74	+1.90	+1.95
Mn2	-1.52	+1.63	+1.90	+1.94
01	-1.84	-1.68	-1.70	-1.52
02	-1.84	-1.78	-1.83	-1.61
03	-1.94	-1.79	-1.74	-1.61
04	-1.94	-1.78	-1.61	-1.50
05	-1.88	-1.77	-1.70	-1.51
06	-1.88	-1.79	-1.83	-1.86
07	-1.89	-1.85	-1.74	-1.68
08	-1.89	-1.66	-1.61	-1.41

Table S2. The charge of Mn and O atoms in *Cc* $Li_{2(1-x)}MnSiO_4$ (*x*=0.00, 0.25, 0.5, 0.75) based on Bader Charge analysis.

Table S3. Energy difference ΔE (eV) between initial and end state and migration barrier (eV) for Mn displacement to adjacent Li vacancy.

Group symmetry	Pmn21	Pnma	Сс
ΔE	0.53	0.46	-0.23
Migration barrier	1.10	1.06	1.48

Electronic properties

As a cathode material, the electronic conductivity is crucial to the overall battery performance, especially for charging/discharging efficiency. Usually, the poly-anion materials have large bandgap (>3eV) due to the strong bonding between polyanion groups and metal-containing polyhedrons. For instance, olivine-structure LiFePO₄ has a band gap of 4.1 eV¹ and shows low electron conductivity, which limits the application at low temperature. We calculate the band structure of *Cc* Li₂MnSiO₄ using GGA+U (U=6.0 eV) as shown in Figure S2, indicating that the Cc phase is a semiconductor with 3.20 eV bandgap which is comparable to those of *Pnma* (3.07 eV) and *Pmn21* (3.05 eV) phases [data from Material Project²]. To get more accurate result, the band

structure is also calculated using the HSE06 functional³, which gives the band gap of 5.0 eV. The density of states suggests that the O 2p-orbital and Mn 3d-orbital mainly contribute to the states around the Fermi level, which implies the competence of redox between Mn and O during delithiation. This is different from the situations in Li_2MnO_3 and CoO_2 .⁴

Figure S2. Band structures of Cc Li₂MnSiO₄ calculated using (a) PBE and (b) HSE06 functional.

Ionic Diffusion

For CI-NEB calculation, two different supercells are used: $2 \times 2 \times 3$ (256 atoms; a=b=12.0 Å, c=14.8 Å) and $2 \times 2 \times 2$ supercell (128 atoms; a=b=12.0 Å, c=9.9 Å), both give very similar results for the energy barrier as shown in Figure S3, indicating that $2 \times 2 \times 2$ supercell can be used for reducing the computational cost. To accelerate the ion-hopping process, temperature is elevated from 700K to 2500K. Thermalization over 4-ps with a time-step of 2 fs is carried out before diffusion calculation.

Figure S3. Energy barrier of Li diffusion in *Cc* Li₂MnSiO₄ in (a) a $2 \times 2 \times 2$ supercell and (b) a $2 \times 2 \times 3$ supercell

Figure S4. MSD for Li, Mn, Si, O atoms as a function of AIMD simulation time at different at 2000K for Li_2MnSiO_4 of (a) Cc phase and (b) Pnm21 phase. Same carrier concentration is used that 8 vacancies are introduced into a $2 \times 2 \times 2$ supercell both for predict and experimental phases.

Figure S5. MSD of Li ion diffusion in a $2 \times 2 \times 2$ supercell of *Cc* Li₂MnSiO₄ with different carrier concentration by introducing 8, 6 and 4 vacancies.

Figure S6. Projection of Li trajectories (yellow) in different views at 1500 K in a 2×2×2 supercell

of Cc Li₂MnSiO₄.

References

- [1] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Journal of the electrochemical society
- **144**, 1188 (1997).
- [2] A. Jain et al., Apl Materials 1, 11002 (2013).
- [3] J. Heyd, Journal of Chemical Physics **118**, 8207 (2003).
- [4] S. Wang, J. Liu, and Q. Sun, Journal of Materials Chemistry A 5 (2017).