Electronic Supporting Information

High-pressure induced a stable phase of Li2MnSiO⁴ for an effective poly-anion

cathode material from simulations

Shuo Wang^a, Junyi Liu^a, Yu Qie^a, Sheng Gong^b, Cunzhi Zhang^a Qiang Sun^{c,d,a,*}, and Puru Jena^e ^a Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China

 b Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

^c Center for Applied Physics and Technology, Peking University, Beijing 100871, China

^d Key Lab of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing 100871, China

^e Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA

Structural information

Figure S1. Geometry structures of different Li₂MnSiO₄ with space group of (a) *Cc*, (b) *Pnma* and (c) *Pmn21*.

Structural Stability

Figure S2. The snapshots of structural geometry of Cc Li₂MnSiO₄ extracted from AIMD simulation at 500K.

Symmetry	$a=b(A)$	c(A)	$\alpha = \beta$ (°)	$\gamma (^\circ)$
Cc	6.00	4.94	108.79	58.16
Atom	$\boldsymbol{\chi}$	\mathcal{Y}	\boldsymbol{z}	Sites
$\rm Li1$	0.84	0.61	0.86	$\sqrt{2}$
	0.61	0.84	0.36	
$\rm Li2$	0.37	0.61	0.84	$\sqrt{2}$
	0.61	0.37	0.34	
${\rm Mn}$	0.11	0.84	0.33	$\boldsymbol{2}$
	0.84	0.11	0.83	
Si	0.37	$0.10\,$	$0.87\,$	$\sqrt{2}$
	$0.10\,$	0.37	0.37	
O ₁	$0.01\,$	0.69	0.59	$\sqrt{2}$
	0.69	0.01	0.09	
O2	0.43	0.24	0.64	$\sqrt{2}$
	0.24	0.43	0.14	
O3	0.24	0.03	0.11	$\sqrt{2}$
	$0.03\,$	0.24	0.61	
O ₄	0.46	0.79	0.65	$\sqrt{2}$
	0.79	0.46	0.15	

Table S1. Lattice parameters of primitive cell of predicted Li2MnSiO⁴ with space group of *Cc* after removing the pressure.

$Li_{2(1-x)}MnSiO_4$	$x=0.00$	$x=0.25$	$x=0.50$	$x=0.75$
Mn1	$+1.55$	$+1.74$	$+1.90$	$+1.95$
Mn2	-1.52	$+1.63$	$+1.90$	$+1.94$
O ₁	-1.84	-1.68	-1.70	-1.52
O ₂	-1.84	-1.78	-1.83	-1.61
O ₃	-1.94	-1.79	-1.74	-1.61
O4	-1.94	-1.78	-1.61	-1.50
O ₅	-1.88	-1.77	-1.70	-1.51
O ₆	-1.88	-1.79	-1.83	-1.86
O7	-1.89	-1.85	-1.74	-1.68
O ₈	-1.89	-1.66	-1.61	-1.41

Table S2. The charge of Mn and O atoms in Cc Li_{2(1-x)}MnSiO₄ ($x=0.00, 0.25, 0.5, 0.75$) based on Bader Charge analysis.

Table S3. Energy difference *∆E* (eV) between initial and end state and migration barrier (eV) for Mn displacement to adjacent Li vacancy.

Group symmetry	Pmn21	Pnma	Cc
ΔE	0.53	0.46	-0.23
Migration barrier	.10	1.06	1.48

Electronic properties

As a cathode material, the electronic conductivity is crucial to the overall battery performance, especially for charging/discharging efficiency. Usually, the poly-anion materials have large bandgap (>3eV) due to the strong bonding between polyanion groups and metal-containing polyhedrons. For instance, olivine-structure LiFePO₄ has a band gap of 4.1 eV¹ and shows low electron conductivity, which limits the application at low temperature. We calculate the band structure of *Cc* Li₂MnSiO₄ using GGA+U (U=6.0 eV) as shown in Figure S2, indicating that the Cc phase is a semiconductor with 3.20 eV bandgap which is comparable to those of *Pnma* (3.07 eV) and *Pmn21* (3.05 eV) phases [data from Material Project²]. To get more accurate result, the band

structure is also calculated using the HSE06 functional³, which gives the band gap of 5.0 eV. The density of states suggests that the O 2p-orbital and Mn 3d-orbital mainly contribute to the states around the Fermi level, which implies the competence of redox between Mn and O during delithiation. This is different from the situations in $Li₂MnO₃$ and $CoO₂$.⁴

Figure S2. Band structures of *Cc* Li₂MnSiO₄ calculated using (a) PBE and (b) HSE06 functional.

Ionic Diffusion

For CI-NEB calculation, two different supercells are used: $2 \times 2 \times 3$ (256 atoms; a=b=12.0 Å, c=14.8) Å) and $2 \times 2 \times 2$ supercell (128 atoms; a=b=12.0 Å, c=9.9 Å), both give very similar results for the energy barrier as shown in Figure S3, indicating that $2 \times 2 \times 2$ supercell can be used for reducing the computational cost. To accelerate the ion-hopping process, temperature is elevated from 700K to 2500K. Thermalization over 4-ps with a time-step of 2 fs is carried out before diffusion calculation.

Figure S3. Energy barrier of Li diffusion in *Cc* Li₂MnSiO₄ in (a) a $2 \times 2 \times 2$ supercell and (b) a $2 \times 2 \times 3$ supercell

Figure S4. MSD for Li, Mn, Si, O atoms as a function of AIMD simulation time at different at 2000K for $Li₂MnSiO₄$ of (a) Cc phase and (b) Pnm21 phase. Same carrier concentration is used that 8 vacancies are introduced into a 2×2×2 supercell both for predict and experimental phases.

Figure S5. MSD of Li ion diffusion in a 2×2×2 supercell of *Cc* Li₂MnSiO₄ with different carrier concentration by introducing 8, 6 and 4 vacancies.

Figure S6. Projection of Li trajectories (yellow) in different views at 1500 K in a 2×2×2 supercell

of *Cc* Li2MnSiO4.

References

[1] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Journal of the electrochemical society

144, 1188 (1997).

- [2] A. Jain *et al.*, Apl Materials **1**, 11002 (2013).
- [3] J. Heyd, Journal of Chemical Physics **118**, 8207 (2003).
- [4] S. Wang, J. Liu, and Q. Sun, Journal of Materials Chemistry A **5** (2017).