Supporting Information for

Topological semimetal porous carbon as a high-performance anode for Li-ion battery

Huanhuan Xie^a, Yu Qie^a, Imran Muhammad^a and Qiang Sun^{a,b,*}

^aDepartment of Materials Science and Engineering, College of Engineering, Peking

University, Beijing 100871, China

^bCenter for Applied Physics and Technology, Peking University, Beijing 100871,

China

*Corresponding Author: sunqiang@pku.edu.cn (Qiang Sun)

Figure S1: Calculated energy band structures along the high-symmetry points.

Figure S2: (a) Phonon spectra and (b) energy fluctuation during AIMD simulation at 300 K.

Figure S3: Charge density difference between the Li atom and the adsorbed system with an isosurface value of 0.004 e/Bohr³. The red and blue are for charge gain and loss, respectively.

Figure S4: Total DOS and PDOS of the fully Li-intercalated $m-C_{16}$

Figure S5: Side views of the six stable intermediate phases for the Li concentrations of (a) 0.125, (b) 0.25, (c) 0.375, (d) 0.5, (e) 0.625 and (f) 0.75.

Figure S6: Energy fluctuation during AIMD simulation at 300 K of the six stable intermediate phases for the Li concentrations of (a) 0.125, (b) 0.25, (c) 0.375, (d) 0.5, (e) 0.625 and (f) 0.75.