Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Rapid Synthesis of Size-Tunable Transition Metal Carbide Nanodots under Ambient Condition

Jun Wan^{a+}, Liang Huang^{a+}, Liukang Xiong^a, Jiabin Wu^a, Xiang Gao^a, Zhimi Hu^a, Hongrun Jin^a, He Zhou^a, Guoqun Zhang^a and Jun Zhou^{*a}

^aWuhan National Laboratory for Optoelectronics, Huazhong University of Science and

Technology, Wuhan, 430074, China.

E-mail: jun.zhou@mail.hust.edu.cn

[†] These authors contributed equally to this work.

Figure S1. Optical images of the sample during microwave treatment with the time interval labeled as two seconds.

Figure S2. The TEM image of pure GO sample.

Figure S3. (a-c) TEM images of Mo₂C nanodots achieved by different concentrations of peroxomolybdic acid: (a) 0.3 mL, (b) 0.5 mL, (c) 0.7 mL, respectively. (d-f) TEM images of W₂C nanodots achieved by different concentrations of peroxotungstic acid: (c) 0.3 mL, (d) 0.5 mL, and (e) 0.7 mL, respectively.

Figure S5. (a) TEM images of Mo_2C achieved by 1 mL peroxomolybdic acid after 120 s microwave treatment. (b) TEM images of W_2C nanodots achieved by 1 mL peroxotungstic acid after 90 s microwave treatment.

Figure S6. (a) TEM images of WC nanodots achieved by 0.3 mL peroxotungstic acid after 120 s microwave time. (b) XRD pattern of the as-synthesized WC nanodots.

Figure S7. The XRD patterns of the hybrid composites fabricated by precursors of phosphomolybdic acid and phosphotungstic acid after microwave treatment for 120 s and 90 s, respectively.

Figure S8. (a) The XPS survey spectra and (b) High-resolution XPS spectra of C 1s for P-Mo₂C-5 sample.

Figure S9. (a) The XPS survey spectra and (b) High-resolution XPS spectra of C 1s

for P-W₂C-3 sample.

Figure S10. (a) Polarization curves and (b) Tafel plots of 20% Pt /C, W_2C-4 , W_2C-10 , W_2C-24 , Mo_2C-6 , Mo_2C-14 and Mo_2C-31 samples in 0.5 M H₂SO₄. (c) Polarization curves and (d) Tafel plots of 20% Pt /C, W_2C-4 , W_2C-10 , W_2C-24 , Mo_2C-6 , Mo_2C-14 and Mo_2C-31 samples in 0.1 M KOH.

Figure S11. Polarization curves of 20% Pt /C, pure GO, P-doped GO, P-W₂C-3 and P-Mo₂C-5 samples in $0.5 \text{ M H}_2\text{SO}_4$.

Peak	Position BE (eV)	Atomic Conc %	Mass Conc %
O 1s	530.700	7.20	4.85
C 1s	284.550	82.25	21.63
Р 2р	132.200	1.26	1.64
Mo 3d	230.050	9.29	71.88

Table S1. The ratios of O, C, P, Mo elements of XPS in phosphorus doped Mo₂C and graphene composites.

Peak	Position BE (eV)	Atomic Conc %	Mass Conc %
O 1s	530.550	8.27	6.09
C 1s	284.400	80.53	5.05
Р 2р	133.000	0.84	1.20
W 4f	33.100	10.36	87.66

Table S2. The ratios of O, C, P, W elements of XPS in phosphorus doped W₂C and graphene composites.

Figure S12. The long-term durability tests of P-W₂C-3 sample at η =60 mV.

Figure S13. The XRD patterns of P-W₂C-3 and P-Mo₂C-5 before and after stability test in acid media.

Figure S14. (a) TEM image of the P-Mo₂C-5 sample after HER in 0.5 M H_2SO_4 . (b) TEM image of the P-W₂C-3 sample after stability test in 0.5 M H_2SO_4 .