Thermally Driven Interfacial Diffusion Synthesis of Nitrogen-Doped Carbon Confined Trimetallic Pt₃CoRu Composites for Methanol Oxidation Reaction

Qingmei Wang, Siguo Chen,* Huiying Lan, Pan Li, Xinyu Ping, Shumaila Ibraheem, Daojun Long, Yijun Duan,

Zidong Wei*

Corresponding Author *csg810519@126.com *zdwei@cqu.edu.cn

The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.

PDA Coating Ading Fe³⁺and Ru³⁺ Initial Pt/C Pt/C@PDA-Co3+ Ru3+ SiO₂ Space-Confined Pyrolysis 10% H2+90% Ar 800°C 4h The final trimetallic Pt₃CoRu/C@NC Pt/C@PDA-Co3+ Ru3+@SiO2 WW NC shell PDA shell SiO₂ shell Co atom / Co³⁺ Final trimetallic Pt₃CoRu/C@NC Ru atom / Ru Pt atom

Figure S1. Schematic fabrication of trimetallic Pt₃CoRu/C@NC catalyst based on thermally driven interfacial diffusion alloying method.

Figure S2. The TEM and HR-TEM images of the prepared Pt₃CoRu/C@NC sample.

Figure S3. TEM images and the corresponding particle size statistics of the Pt₃CoRu/C@NC and commercial Pt/C catalysts after high-temperature annealing.

Figure S4. The HRTEM images of the Pt₃CoRu/C@NC catalysts.

Figure S5. The Ru/Pt and Co/Pt atomic ratio from EELS and the corresponding EDX profile and atomic fraction of the $Pt_3CoRu/C@NC$ NP.

(a) HAADF	(b) C	(c) N	`(d) o
(e)	(6) Ρι ∟150 nm	(g) Ru	(h) Co

Figure S6. HAADF-STEM images of the Pt₃CoRu/C@NC catalysts (a) and the corresponding elemental mapping (b-h).

Figure S7. The EDX profile and corresponding atomic fraction of the $Pt_3CoRu/C@NC$ catalyst.

Figure S8. The illustration of the corresponding pyrrolic-N and pyridinic-N quaternary-N respectively.

Figure S9. The detailed CO stripping curves of the Pt₃CoRu/C@NC and commercial Pt/C catalysts.

Figure S10. The TEM images of the Pt/C and Pt₃CoRu/C@NC catalyst after under a constant potential of 0.75VRHE for 6000s.

Peak currents from CV								
Catalysts	I _f :I _b	Onset	curves		Electrolytes	References		
		Potential(v)of CO						
		oxidation	MA	SA				
		(vsRHE)	(A/mg pt)	(mA/cm ²)				
Fe@(PtRu) NPs		0.295 vs NHE	0.819		0.1 M HClO ₄ +1 M Methanol	1		
PtRuFe NWs		0.41		2.4	0.1 M HClO ₄ + 0.5 M Methanol	2		
PtPdRu spheres	0.97		0.294		0.5 M HClO ₄ + 0.5 M Methanol	3		
FePtPd NWs	1.09		0.489		0.1 M HClO ₄ + 0.2 M Methanol	4		
Pt ₄ Ru ₄ Fe ₂ /C		0.4	0.11	1.31	1 M H ₂ SO ₄ + 1 M methanol	5		
Pt ₅ Ru ₃ Fe ₂ /C		0.3	0.107	1.22	1 M H ₂ SO ₄ + 1 M Methanol	5		
Au/Ag/Pt			0.98	1.33	1 M H ₂ SO ₄ + 1 M Methanol	6		
PtRuCu/C dendrites	1.32	0.47	1.13	1.20	0.1 M HClO ₄ + 1 M Methanol	7		
Pt ₃ CoRu/C@NC	2.50	0.35	0.97	1.60	0.1 M HClO ₄ + 0.5 M Methanol	This work		

 Table S1. A brief comparison of the MOR electrochemical activity of the catalysts reported in the currently

 literature to the trimetallic Pt₃CoRu/C@NC catalyst.

Reference:

- M. A. Matin, E. J. Lee, H. Y. C. Kim, Won-Sub. Yoonc, Young-Uk. Kwon, Rational syntheses of core-shell Fe@(PtRu) nanoparticle electrocatalysts for the methanol oxidation reaction with complete suppression of CO-poisoning and highly enhanced activity. J. Mater. Chem. A. 3 (2015) 17154.
- (2) Megan E. Scofield, Christopher Koenigsmann, L. Wang, H. Q. Liu, Stanislaus S. Wong, Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. *Energy. Environ. Sci.* 8 (2015) 350.
- (3) B. Jiang, H. Ataee-Esfahani, C. L. Li, M. Alshehri, T. Ahamad, J. Henzie, Y. Yamauchi. Mesoporous Trimetallic PtPdRu Spheres as Superior Electrocatalysts, *Chem. Eur. J.* 22 (2016) 7174 -7178.

- (4) J. Y. Tang, D. Chen, C. Y. Li, X. F. Yang, H. Liu, J. Yang, Fine silver sulfide-platinum nanocomposites supported on carbon substrates for the methanol oxidation reaction. *RSC Adv.* 7 (2017) 3455.
- (5) K. R. Lee, M. K. Jeon, S. I. Woo, Composition optimization of PtRuM/C (M = Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method. *Appl. Catal. B: Environ.* 91 (2009) 428-433.
- (6) X. B. Xie, G. H. Gao, S. D. Kang, T. Shibayama, Y. H. Lei, D. Y. Gao, L. T. Cai, Site-Selective Trimetallic Heterogeneous Nanostructures for Enhanced Electrocatalytic Performance, *Adv. Mater.* 27 (2015) 5573-5577.
- (7) S. F. Xue, W. T. Deng, F. Yang, J. L. Yang, Ibrahim. Saana. Amiinu, D. P. He, H. L. Tang, S. C. Mu. Hexapod PtRuCu Nanocrystalline Alloy for Highly Efficient and Stable Methanol Oxidation, *ACS Catal.* 8 (2018) 7578-7584.