Supporting Information

Underlying mechanism of CO₂ adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO₂ chiefly through acid-base interaction?

Shi-Chao Qi, Ju-Kang Wu, Jie Lu, Guo-Xing Yu, Rong-Rong Zhu, Yu Liu, Xiao-Qin Liu and Lin-Bing Sun*

State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China *Corresponding author. E-mail: lbsun@njtech.edu.cn

Supplementary Tables

Material	Geometry	Zero-point energy (Hartree)	
3AM	دود وطور دوطوره	-446.073235	
2AM	ిల్లాని. అంది. లాలాలా	-430.016216	
3CL		-1658.476871	
2CL		-1642.441762	
HCl	۵	-460.645646	

Table S1. Zero-point energies of first-principle optimized geometries of four monomers and HCl.

Table S2. Formation potential of first-principle optimized geometry of dimer composed by 3AM and 3CL.

Dimer	Geometry	Zero-point energy (Hartree)	Formation potential (kcal/mol)
3AM-3CL	son of the second	-1643.926612	-13.9

Dimer	Geometry	Zero-point energy (Hartree)	Formation potential (kcal/mol)
3AM-2CL-1	مون مانو موقع مانو	-1627.887557	-11.4
3AM-2CL-2		-1627.881985	-7.9
3AM-2CL-3	and and and and against and a	-1627.893908	-15.4

Table S3. Formation potentials of first-principle optimized geometries of dimers composed by 3AM and 2CL.

Table S4. Formation potentials of first-principle optimized geometries of dimers composed by 2AM and 3CL.

Dimer	Geometry	Zero-point energy (Hartree)	Formation potential (kcal/mol)
2AM-3CL-1		-1627.872282	-15.6
2AM-3CL-2	مون مونفو شون مونفو شون	-1627.870239	-14.3
2AM-3CL-3	and a star	-1627.881204	-21.2

Dimer	Geometry	Zero-point energy (Hartree)	Formation potential (kcal/mol)
2AM-2CL-1		-1611.832803	-12.8
2AM-2CL-2	موم موریکی محمد موریکی محمد محمد م	-1611.839248	-16.9
2AM-2CL-3		-1611.827444	-9.5
2AM-2CL-4	and and a start and a start and a start a star	-1611.830772	-11.6
2AM-2CL-5		-1611.841832	-18.5
2AM-2CL-6	مونه و هو مانو مونو مونه و هو هو	-1611.837980	-16.1
2AM-2CL-7		-1611.833275	-13.1
2AM-2CL-8	ses en	-1611.824042	-7.3
2AM-2CL-9		-1611.837260	-15.6

Table S5. Formation potentials of first-principle optimized geometries of dimers composed by 2AM and 2CL.

Construct	\mathbf{C} (-2)	\mathbf{V}	Theoretical N content	Elemental analysis (%, wt)			
Copolymer	SBET (M /g)	V pore (CIII /g)	(%, wt)	С	Н	Ν	O and ash
3AM3CL	894	0.864	62.7	34.2	2.2	59.4	4.2
3AM2CL	196	0.601	56.0	37.8	2.8	53.2	6.2
2AM3CL	105	0.535	56.0	39.5	3.3	52.3	4.9
2AM2CL	47	0.347	49.2	43.9	3.7	46.8	5.6

Table S6. Textural characteristics and elemental contents of the samples.

Table S7. The energies of LUMO $(\pi^*)^a$, HOMO^{*b*}, and highest occupied conjugated- π orbital of copolymers.

Orbital	3AM3CL	3AM2CL	2AM3CL	2AM2CL
LUMO (π*)				
$E_{\rm LUMO}/{\rm eV}$	-1.66	-1.68	-1.87	-1.59
номо				
E _{HOMO} /eV	-5.00	-4.74	-4.69	-4.30
Conjugated π				
E_{π}/eV	-8.56	-8.84	-9.08	-9.46
$\Delta E (\pi^*-\pi)/\mathrm{eV}$	6.89	7.15	7.21	7.87

^a LUMO, lowest unoccupied molecular orbital; ^b HOMO, highest occupied molecular orbital.

Adsorbent	e ^a	$S_{\rm BET}$ (m ² /g)	σ (10 ⁻¹⁹ m ²) ^b	D _{neg} (mmol/g) ^c	C _{ads,0} (mmol/g)	C _{ads,25} (mmol/g)
3AM3CL	3	894	6.573	6.775	3.10	2.01
3AM2CL	2	196	6.678	0.975	1.21	0.60
2AM3CL	2	105	6.810	0.512	1.10	0.56
2AM2CL	1	47	6.891	0.113	0.99	0.52

Table S8. Parameters for the derivation of functional relationship between Cads and Dneg at 0 °C and 25 °C.

^{*a*} ε , the masking factor for each copolymer indicating the average number of unshielded negative ESP sites in a triangular intramolecular cave ($\varepsilon = 3, 2, 2, \text{ and } 1$ for 3AM3CL, 3AM2CL, 2AM3CL, and 2AM2CL, respectively); ^{*b*} σ , the first-principle calculated average area of one hexagonal structure in corresponding copolymer (m²); ^{*c*} D_{neg} , the effective density of the negative potential sites on the interface.

Table S9. Negative ESP extremum of representative N-based CO2 adsorption sites calculated with first-principle.

N-based CO ₂ adsorption site	Negative ESP extremum (eV)
NH ₃	-0.070
NH ₂ NH ₂	-0.058
H2NCH2CH2NH2	-0.064
Et ₂ NH	-0.051
Et ₃ N	-0.042
Aniline	-0.033
Indole	-0.035
Pyridine	-0.059
Quinoline	-0.056

Table S10. Textural properties of the SU-MAC adsorbents of Ref. 45 and the estimated effective N content.

Matariala	SBET	N content	CO ₂ capacity at 298K	C	CO apposite natio		
wrateriais	m ² g ⁻¹	%, wt	mmol g ⁻¹	SBET ratio	Effective IN content ratio	CO ₂ capacity ratio	
SU-MAC-500	941	5.8	4.50	0.397	0.720	1.447	
SU-MAC-600	1500	4.0	4.18	0.633	0.791	1.344	
SU-MAC-800	2369	3.2	3.11	1.000	1.000	1.000	

a, Effective N content ratio is estimated through N content multiplying by SBET ratio.

Supplementary Figures

Fig. S1. Solid state ¹³C-NMR spectrum of 3AM3CL. δ = 168.3 ppm, C atoms of triazine rings bonding –NH–.

Fig. S2. Solid state ¹³C-NMR spectrum of 3AM2CL. δ = 163.9 and 153.1 ppm, C atoms bonding –NH–; δ = 113.9, 106.3, 52.7, and 28.4 ppm, 5'-C atoms of pyrimidine rings.

Fig. S3. Solid state ¹³C-NMR spectrum of 2AM3CL. δ = 161.1 and 137.6 ppm, C atoms bonding –NH–; δ = 111.1, 85.6, 60.5, and 43.6 ppm, 5'-C atoms of pyrimidine rings.

Fig. S4. Solid state ¹³C-NMR spectrum of 2AM2CL. δ = 162.9 and 153.6 ppm, C atoms bonding –NH–; δ = 113.0, 91.5, 53.2, and 32.6 ppm, 5'-C atoms of pyrimidine rings.

Fig. S5. TG and DTG profiles of four copolymers.

Fig. S6. The representative configuration of interaction between two interlayers of a copolymer.

Fig. S7. XRD patterns of four copolymers.

Fig. S8. SEM images of four copolymers.

Fig. S9. XPS spectra for N1s of four copolymers.

Fig. S10. In-situ DRFTIR spectra of the copolymers (a) and those of net changes after CO_2 adsorption (b). With taken those of the copolymers as background spectra, the in-situ DRFTIR spectra of net changes for the copolymers were recorded after vacuum treatment at 85 °C for 2 h, and the subsequent sufficient gas replacement by CO_2 at 2 bar and 25 °C.

Fig. S11. (A) Fitted functional relationship between $C_{ads,0}$ at 0 °C and D_{neg} based on 3AM2CL, 2AM3CL, and 2AM2CL; and (B) the risen $C_{ads,0}$ caused by micropores of 3AM3CL.

Fig. S12. (A) Fitted functional relationship between $C_{ads,25}$ at 25 °C and D_{neg} based on 3AM2CL, 2AM3CL, and 2AM2CL; and (B) the risen $C_{ads,25}$ caused by micropores of 3AM3CL.

Fig. S13. Projected density of states of 0/3, 1/3, 2/3, and 3/3 Masking Sites.

Fig. S14. Isosteric heats (Q_{st}) of CO₂ adsorption over the four copolymers. Q_{st} were calculated from the data of CO₂ uptake at the temperatures of 0 °C and 25 °C, fitted with a virial-type expression.

Fig. S15. The condensed states of 32 CO₂ molecules onto different Masking Sites.

Fig. S16. The centroid altitude distribution of 32 CO₂ molecules onto different Masking Sites.

Fig. S17. Projected density of states of N_2 molecule adsorbed on the 0/3, 1/3, 2/3, and 3/3 Masking Sites.