Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

> This ESI for *J. Mater. Chem. A*, 2019, DOI: 10.1039/C9TA05115E, originally published on 20th June 2019, was updated on 10th July 2019 to fix an error in the legend of Fig. S3 ('Cu 4d' was corrected to 'Cu 3d').

> > Electronic Supporting information for

Significant average *ZT* **enhancement in Cu3SbSe4-based**

thermoelectric material via softening *p***-***d* **hybridization**

Dan Zhang, ^{a, b} Junyou Yang ^{b*}, Hongchang Bai ^a, Yubo Luo ^c, Bin Wang ^a, Shuaihang Hou ^a, Zhiliang Li^{a*} and Shufang Wang^{a*}

a Hebei Key Lab of Optic-Electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China

b State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, P.R. China

^c School of materials science and engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

1) Effective mass and Lorenz number calculation based on SPB model

The effective mass (*m**) and Lorenz number (*L*) are calculated according to the

following equations $[1-2]$:

$$
S = \pm \frac{\kappa_{\rm B}}{e} \left(\frac{(r+5/2)F_{r+3/2(\eta)}}{(r+3/2)F_{r+1/2(\eta)}} - \eta \right) \tag{1}
$$

$$
F_n(\eta) = \int_0^\infty \frac{x^n}{1 + e^{x - n}} \, \mathrm{d}x \tag{2}
$$

$$
m^* = \frac{h^2}{2k_B T} \left[\frac{n}{4\pi F_{1/2}(\eta)} \right]^{2/3} \tag{3}
$$

$$
L = \left(\frac{\kappa_B}{e}\right)^2 \left\{ \frac{(r+7/2)F_{r+5/2(\eta)}}{(r+3/2)F_{r+1/2(\eta)}} - \left[\frac{(r+5/2)F_{r+3/2(\eta)}}{(r+3/2)F_{r+1/2(\eta)}} \right]^2 \right\} \tag{4}
$$

Where η is the reduced Fermi energy, $F_n(\eta)$ is the *n*th order Fermi integral, κ_B is the Boltzmann constant, *e* is the electron charge, *h* is the Planck constant and *r* is the scattering factor. The scattering factor (r) is $-1/2$ as the acoustic phonon scattering is independent of the grain size and is generally assumed to be the main scattering mechanism at room temperature.

2) Callaway model calculation

The Debye-Callaway model is used to describe the influence of point defects on the lattice thermal conductivity. Following equations $[3-5]$ are used for the modeling of the composition-dependent lattice thermal conductivity:

$$
\frac{\kappa_L^{cal}}{\kappa_L^{pure}} = \frac{\tan^{-1}(U)}{U} \tag{5}
$$

$$
U = \left(\frac{\pi^2 \theta_D \Omega}{hv^2} \kappa_L^{pure} \Gamma\right)^{\frac{1}{2}} \tag{6}
$$

$$
\Gamma = \Gamma_m + \Gamma_s = x(1-x) \left[\left(\frac{\Delta M}{M} \right)^2 + \varepsilon \left(\frac{\Delta r}{r} \right)^2 \right] \tag{7}
$$

Where κ_L^{pure} is the lattice thermal conductivity of the parent sample, κ_L^{cal} is the calculated lattice thermal conductivity, θ_D is the Debye temperature calculated from the sound velocity measurement, *h* is the Planck constant, *Ω* is the average volume per atom, *v* is the average sound velocity, *Γ* is the total disorder parameter which includes the mass fluctuation part (Γ_m) and strain field fluctuation part (*Γs*), *M* is the average atomic mass, *ΔM* is the mass difference, *r* is the average atomic radius, Δr is the atomic radius difference, ε is the lattice anharmonic parameter estimated by the method from refs [6].

Fig. S1. Rietveld refinement using X-ray diffraction data for $Cu_{3-3x}Ag_{3x}SbSe_4$ samples: (a) $x =$ 0.02; (b) $x = 0.03$; (c) $x = 0.04$; (d) $x = 0.05$; (e) $x = 0.06$.

Fig. S2. The calculated distance between Sb site and Se site for $Cu_{3-3x}Ag_{3x}SbSe_4$ ($x = 0, 0.02, 0.03,$ 0.04, 0.05, 0.06) samples.

Fig. S3. The calculated total and partial density of states (PDOS) for pristine Cu3SbSe4.

Fig. S4. Temperature dependence of the calculated Lorenz number.

Tab. S1. The relative content of AgSbSe₂, calculated carrier effective mass (m^*) , and measured density for Cu3*-*3*x*Ag3*x*SbSe4 samples (*x*= 0, 0.02, 0.03, 0.04, 0.05 and 0.06).

Tab. S2. Physical parameters (average sound velocity *v*a, Debye temperature *θ*, Poisson ratio *ε*, bulk modules *B* and Grüneisen parameter *γ*) calculated from the measured longitudinal (v_L) and transverse (v_T) sound velocity at room temperature for Cu_{3-3x}Ag_{3x}SbSe₄ samples ($x = 0, 0.02, 0.03,$ 0.04, 0.05 and 0.06)

Sample	$v_{\rm L}$	$v_{\rm T}$	$v_{\rm a}$ (m/s)	$\theta(K)$	$\boldsymbol{\varepsilon}$	B(GPa)	γ
	(m/s)	(m/s)					
$x = 0.00$	3976	2012	2256	238	0.3	62.4	1.96
$x = 0.02$	3896	1963	2201	232	0.3	59.4	1.97
$x = 0.03$	3896	1955	2193	231	0.3	59.1	1.99
$x = 0.04$	3899	1989	2229	235	0.3	60.8	1.93
$x = 0.05$	3889	1964	2202	232	0.3	59.5	1.97
$x = 0.06$	3862	1955	2192	231	0.3	58.9	1.96

References

[1] G. S. Nolas, J. Sharp and H. J. Goldsmid, *Thermoelectrics: Basic Principles and New Materials Developments*, Springer, Berlin, 2001, 36-42.

[2] Andrew F. May and G. Jeffrey Snyder, in *Materials, Preparation and Characterization in Thermoelectrics*, ed. D. M. Rowe, CRC press, Boca Raton, 2012, chap. 11, 1-18

[3] J.Callayway, H. C. Von Baeyer, *Phys. Rev*., 1960, **120**, 1149;

[4] T. K.Dey, K. D.Chaudhuri, *J. Low. Temp. Phys*., 1976, **23**, 419;

[5] J.Yang, G. P. Meisner, L Chen, *Appl. Phys. Lett.,* 2004, **85**, 1140.

[6] C. L. Wan, W. Pan, Q. Xu, Y. X. Qin, J. D. Wang, Z. X. Qu and M. H. Fang, *Phys.*

Rev. B, 2006, **74**, 144109.