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This ESI for J. Mater. Chem. A, 2019, DOI: 10.1039/C9TA05115E, originally published on 20th 
June 2019, was updated on 10th July 2019 to fix an error in the legend of Fig. S3 (‘Cu 4d’ was 

corrected to ‘Cu 3d’). 
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1)  Effective mass and Lorenz number calculation based on SPB model 

The effective mass (m*) and Lorenz number (L) are calculated according to the 

following equations [1-2]: 
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Where η is the reduced Fermi energy, 𝐹𝐹𝑛𝑛(𝜂𝜂) is the nth order Fermi integral, 𝜅𝜅𝐵𝐵 is the 

Boltzmann constant, e is the electron charge, h is the Planck constant and r is the 

scattering factor. The scattering factor (r) is -1/2 as the acoustic phonon scattering is 
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independent of the grain size and is generally assumed to be the main scattering 

mechanism at room temperature. 

 
2) Callaway model calculation 

The Debye-Callaway model is used to describe the influence of point defects on 

the lattice thermal conductivity. Following equations [3-5] are used for the modeling of 

the composition-dependent lattice thermal conductivity: 
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Where 𝜅𝜅𝐿𝐿
𝑝𝑝𝑝𝑝𝑟𝑟𝑒𝑒 is the lattice thermal conductivity of the parent sample, 𝜅𝜅𝐿𝐿𝑐𝑐𝑡𝑡𝑐𝑐is the calculated lattice 

thermal conductivity, θD is the Debye temperature calculated from the sound velocity 

measurement, h is the Planck constant, Ω is the average volume per atom, v is the average sound 

velocity, Γ is the total disorder parameter which includes the mass fluctuation part (Γm) and strain 

field fluctuation part (Γs), M is the average atomic mass, ΔM is the mass difference, r is the 

average atomic radius, Δr is the atomic radius difference, ε is the lattice anharmonic parameter 

estimated by the method from refs [6]. 
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Fig. S1. Rietveld refinement using X-ray diffraction data for Cu3-3xAg3xSbSe4 samples: (a) x = 

0.02; (b) x = 0.03; (c) x = 0.04; (d) x = 0.05; (e) x = 0.06. 
 

 
Fig. S2. The calculated distance between Sb site and Se site for Cu3-3xAg3xSbSe4 (x = 0, 0.02, 0.03, 

0.04, 0.05, 0.06) samples. 

 

Fig. S3. The calculated total and partial density of states (PDOS) for pristine Cu3SbSe4. 
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Fig. S4. Temperature dependence of the calculated Lorenz number. 

 
 
 

 
Tab. S1. The relative content of AgSbSe2, calculated carrier effective mass (m*), and measured 

density for Cu3-3xAg3xSbSe4 samples (x= 0, 0.02, 0.03, 0.04, 0.05 and 0.06). 

Sample AgSbSe2 

(wt.%) 
m* 

(me) 
Density 
(g.cm-3) 

Theoretical 
Density 

(%) 

x = 0.00 -- 1.40 5.60 96.6 

x = 0.02 -- 1.46 5.55 95.7 

x = 0.03 -- 1.80 5.67 97.8 

x = 0.04 -- 1.60 5.56 95.9 

x = 0.05 0.48 1.41 5.61 96.7 

x = 0.06 1.29 1.21 5.58 96.2 
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Tab. S2. Physical parameters (average sound velocity va, Debye temperature θ, Poisson ratio ε, 
bulk modules B and Grüneisen parameter γ) calculated from the measured longitudinal (vL) and 

transverse (vT) sound velocity at room temperature for Cu3-3xAg3xSbSe4 samples (x = 0, 0.02, 0.03, 
0.04, 0.05 and 0.06)  

Sample vL

（m/s） 

vT

（m/s） 

va（m/s） θ(K) ε B (GPa) γ 

x = 0.00 3976 2012 2256 238 0.3 62.4 1.96 

x = 0.02 3896 1963 2201 232 0.3 59.4 1.97 

x = 0.03 3896 1955 2193 231 0.3 59.1 1.99 

x = 0.04 3899 1989 2229 235 0.3 60.8 1.93 

x = 0.05 3889 1964 2202 232 0.3 59.5 1.97 

x = 0.06 3862 1955 2192 231 0.3 58.9 1.96 
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