Supporting Information

High loading accessible activity sites via designable 3D-printed

metal architecture towards promoting electrocatalytic

performance

Shuai Chang, ‡^{a,b} Xiaolei Huang, ‡^c Chun Yee Aaron Ong,^b Liping Zhao,^d Liqun Li,ª Xuesen

Wang,^c Jun Ding^b*

^aState Key Laboratory of Advanced Welding and Joining,

Harbin Institute of Technology, Harbin, 15001, China.

^bDepartment of Materials Science and Engineering, Faculty of Engineering, National

University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.

E-mail: msedingj@nus.edu.sg

^cDepartment of Physics, Faculty of Science,

National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore.

^dNational Metrology Centre (NMC),

*A*STAR, 1 Science Park Drive, Singapore 118221, Singapore.*

** Corresponding authors*

‡ These authors contributed equally to this work.

Figure S1. (a) Conductivity and (b) tensile strength of 3D printed 316L stainless steel solid plate, 3D printed 316L stainless steel porous plate, commercial 316L stainless steel foam, and commercial nickel foam.

Figure S2. Photos of 3D printed electrocatalytic support (#6 support) before (left) and after (right) coating $NiCo₂S₄$ nanoneedles (#6N electrode).

Figure S3. (a) XRD patterns of $NiCo₂S₄$ nanoneedles on #6N electrode. Inset: High-resolution TEM image of $NiCo₂S₄$ nanoneedles. (b) Ni 2p, (c) Co 2p and (d) S 2p XPS spectra for NiCo₂S₄ nanoneedles on #6N electrode.

XRD, TEM and XPS were used for the structural evaluation of $NiCo₂S₄$ nanoneedles. Crystalline NiCo₂S₄ phase was confirmed in our XRD examination (Figure S3a). NiCo₂S₄ nanoneedles were detached ultrasonically from the support for TEM examination. The measured lattice spacing between two fringes in high-resolution TEM (Figure S3a inset) were 0.286 nm and 0.163 nm, which is the diffraction of the (113) and (044) lattice planes, respectively, of the $NiCo₂S₄$ phase.^[1,2] We used XPS to characterize the chemical valence states of the various elements in the $NiCo₂S₄$ nanoneedles structure. Figure S3b-S3d displays the typical fitted Ni 2p, Co 2p and S 2p XPS spectra of the $NiCo₂S₄$ nanoneedles. It can be found that the sample had a composition of Co^{2+} , Co^{3+} , Ni^{2+} , and Ni^{3+} cations, metal-S (M–S) bonds, and $S²⁻$ anions, which is consistent with that of reported NiCo₂S₄.^[3,4] In summary, the NiCo₂S₄ catalyst was confirmed to be well-gown on the 3D printed support.

Figure S4. Cyclic voltammograms of 3D printed supports with various structures. (a) #1 support. (b) #2 support. (c) #3 support. (d) #4 support. (e) #5 support. (f) #6 support.

Figure S5. Cyclic voltammograms of 3D printed supports with in-situ growth of $NiCo₂S₄$ nanoneedles. (a) $#1N$ electrode. (b) $#2N$ electrode. (c) $#3N$ electrode. (d) $#4N$ electrode. (e) #5N electrode. (f) #6N electrode.

Figure S6. (a) Cathodic current measured at 0 V (vs. Hg/HgO) as a function of scan rate for 3D printed supports. (b) Cathodic current measured at 0 V (vs. Hg/HgO) as a function of scan rate for electrodes.

Figure S7. Polarization curves of 3D printed supports at a scan rate of 1 mV s^{-1} . Inset: Overpotential of 3D printed supports at a current density of 10 mA cm⁻².

Formula (V vs. RHE)
Figure S8. (a) Polarization curves of #6 N, NiCo₂S₄@Carbon cloth and NiCO₂S₄@Nickel foam electrodes at a scan rate of 1 mV s⁻¹ with 85% iR compensation. (b) Overpotetnials of NiCo₂S₄ with various supports at a current density of 10 mA cm⁻².

Figure S9. SEM images of NiCo₂S₄ catalyst coated on 3D printed support (#6N electrode). (a) Initial. (b) After 2000 LSV cycles.

Figure S10. (a) XRD patterns of NiCo₂S₄ nanoneedles on #6N electrode. (b) Ni 2p, (c) Co 2p and (d) S 2p XPS spectra for NiCo₂S₄ nanoneedles on #6N electrode. Top: initial, down: after LSV 2000 cycles

Figure S11. (a) TEM image of single $NiCo₂S₄$ nanoneedle after LSV 2000 cycles. Inset: High resolution TEM image. (b) Elemental mappings for Ni, Co and S.

Figure S12. Photos of electrolyte (1M KOH) before and after chronopotentiometry test for 50 hours with a current density of 10 mA cm⁻². (a) Initial electrolyte (clear and colorless). (b) Electrolyte after chronopotentiometry test using as-printed #6 support. (b) Electrolyte after chronopotentiometry test using #6N electrode (NiCo₂S₄ catalyst coated on $\overline{3D}$ printed support).

Figure S13. (a) Polarization curves of the optimized #6N electrode with loading various amount of NiCo₂S₄ catalyst at a scan rate of 1 mV s⁻¹ with 85% iR compensation. (b) Corresponding overpotentials as a function of loading of NiCo₂S₄ catalyst.

Figure S14. Electrocatalytic efficiency of O_2 production over #6N electrode at a current density of ca. 50 mA cm-2 , measured for 90 minutes.

Support	Overpotential (mV)			Tafel slope	Dura- bility	
	@10 -2 mA cm	(a) 50 -2 mA cm	(a) 100 $^{-2}$ mA cm	mV $\mathrm{dec}^{^{-1}}$	$\,h$	Ref.
#6	226	264	277	38.7	50	This
#1	308	\overline{a}		45.0		work
NiCo coated nickel foam		330	$340*$	73.2		$[5]$
Nickel foam	320*	372	420*	71.5		$[5]$
Nickel foam	310*	381*	409	91.0		[6]
Nickel foam		300*	319	53.3	-	$[3]$
Graphdiyne foam	308*	328	338	47.0		$[7]$
Carbon cloth	323*	376	402	76.0		$[7]$
Nickel foam	260	$345*$	384*	40.1	50	$[1]$
Carbon cloth	309*	$322*$	340	89.0		$[2]$
Reduced graphene oxide	467					[8]
Glassy carbon	337			64.0	30	$[9]$

Table S1. Comparison of OER performances of representative NiCo₂S₄ based electrocatalysts with different supports in 1M KOH.

(*) The overpotetnial was estimated from the corresponding polarization curves.

Reference:

- **[**1] A. Sivanantham, P. Ganesan and S. Shanmugam, *Advanced Functional Materials*, 2016, **26**, 4661-4672.
- [2] D. Liu, Q. Lu, Y. Luo, X. Sun and A. M. Asiri, *Nanoscale*, 2015, **7**, 15122-15126.
- [3] J. Yu, C. Lv, L. Zhao, L. Zhang, Z. Wang and Q. Liu, *Advanced Materials Interfaces*, 2018, **5**, 1701396.
- [4] X. Wu, S. Li, B. Wang, J. Liu and M. Yu, *Phys Chem Chem Phys*, 2017, **19**, 11554- 11562.
- [5] Y. Ning, D. Ma, Y. Shen, F. Wang and X. Zhang, *Electrochimica Acta*, 2018, **265**, 19- 31.
- [6] X. Yin, G. Sun, L. Wang, L. Bai, L. Su, Y. Wang, Q. Du and G. Shao, *International Journal of Hydrogen Energy*, 2017, **42**, 25267-25276.
- [7] Y. Xue, Z. Zuo, Y. Li, H. Liu and Y. Li, *Small*, 2017, **13**.
- [8] Q. Liu, J. Jin and J. Zhang, *ACS Appl Mater Interfaces*, 2013, **5**, 5002-5008.
- [9] J. Jiang, C. Yan, X. Zhao, H. Luo, Z. Xue and T. Mu, *Green Chemistry*, 2017, **19**, 3023- 3031.