One-Step Synthesis of Flower-Like Bi₂O₃/Bi₂Se₃ Nanoarchitectures and NiCoSe₂/Ni_{0.85}Se Nanoparticles with Appealing Rate Capability for Constructing High-Energy and Long-Cycle-Life Asymmetric Aqueous Batteries

Alan Meng^a, Xiangcheng Yuan^a, Tong Shen^a, Zhenjiang Li^{b#}, Qingyan Jiang^c,

Hongyao Xue^b, Yusheng Lin^d, Jian Zhao^{b*}

^aState Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.

^bKey Laboratory of Polymer Material Advanced Manufacturing Technology of ShandongProvincial,College of Electromechanical Engineering, College of Sino-German Science and Technology, Qingdao University of Science and Technology, Oingdao 266061, Shandong, P. R. China.

^cOcean College, Zhejiang University, Zhoushan 316021, Zhejiang, P. R. China.

^d College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.

[#]*These authors contributed equally to this work and should be considered co-first authors.*

*Corresponding Author

E-mail: zhaojian19880105@163.com

Calculations:

(1) The specific capacity (Q) and specific capacitance (C) of the Bi_2O_3/Bi_2Se_3 NFs or NiCoSe₂/Ni_{0.85}Se NPs on graphite substrate electrode calculated from GCD curves are obtained according to the following equation:

$$Q = \frac{I\Delta t}{\Delta V}; C = \frac{I\Delta t}{m\Delta V}$$

where *I* is the discharge current, Δt is the discharge time in GV test, *m* is the active material mass, and ΔV is the voltage window.

(2) The specific capacitance of the Bi_2O_3/Bi_2Se_3 NFs//NiCoSe₂/Ni_{0.85}Se NPs asymmetric aqueous battery (AAB) device can be got in accordance with the following equation:

$$C_{\text{device}} = \frac{I\Delta t}{M\Delta V}$$

Herein, *I* is the discharge current, Δt is the discharge time in GCD test, *M* is the total mass of both positive and negative electrodes, and ΔV is the voltage window of the device.

(3) Methods to calculate the energy and power density of the ASC device:

$$E = \frac{1}{2}C_{\text{device}}\Delta V^2 \quad ; \quad P = \frac{E}{t}$$

Here, C_{device} is the specific capacitance of the device, ΔV is the potential window, and *t* is the discharge time.

Fig. S1. SEM image of the obtained Bi_2O_3/Bi_2Se_3 NFs.

Fig. S2. The elemental mapping of the Bi_2O_3 (a-c) and Bi_2Se_3 sample (d-f).

Fig. S3. Low-resolution cross-section SEM images of the Bi_2O_3 (a), Bi_2Se_3 (b) and Bi_2O_3/Bi_2Se_3 (c).

Fig. S4. The typical TEM images of the Bi_2O_3 (a) and Bi_2Se_3 (b) with the insets showing the corresponding SAED patterns and HRTEM images.

Fig. S5. Local-magnification XRD pattern of Bi₂O₃ NSs.

Fig. S6. XPS survey spectrum of Bi₂O₃/Bi₂Se₃ NFs.

Fig. S7. XPS survey spectrum of the pristine $Bi_2O_3(a)$ and $Bi_2Se_3(b)$ products .

Fig. S8. GCD profiles at different current densities of the Bi₂O₃ NSs (a) and Bi₂Se₃ NSs (b) electrode

Fig. S9. specific capacitance values of the Bi₂O₃ NSs, Bi₂O₃/Bi₂Se₃ NFs and Bi₂Se₃ NSs electrode versus different current densities

Bi ₂ O ₃ /Bi ₂ Se	Solvothermal	Graphite substrate	132.7 mAh g ⁻¹ (531F g ⁻¹) at 1 A g ⁻¹	113.8 mAh g ⁻¹ (455 F g ⁻¹) at 10 A g ⁻¹	In this work
Fe ₂ O ₃	Hydrothermal	Ni foam	269 mAh g ⁻¹ (0.3A g ⁻¹)	67.3 mAh g ⁻¹ (12.3 A g ⁻¹)	S10
Fe ₃ O ₄	Hydrothermal and calcination	Ni foam	379.8 F g ⁻¹ (2 A g ⁻¹)	272.2 F g ⁻¹ (10 A g ⁻¹)	S9
ZnFe ₂ O ₄	Calcination	Ni foam	58.7 mAh g ⁻¹ (1 A g ⁻¹)	50.2 mAh g ⁻¹ (1 A g ⁻¹)	S8
MoS ₂	Hydrothermal	RCF	225 F g ⁻¹ (0.5A g ⁻¹)	106 F g ⁻¹ (5 A g ⁻¹)	S7
WO ₃	Calcination	GCE	508 F g ⁻¹ (1 A g ⁻¹)	332.2 F g ⁻¹ (20 A g ⁻¹)	S6
Fe ₂ O ₃	Hydrothermal	Ni foam	158.9 mAh g ⁻¹ (1 A g ⁻¹)	32.8 mAh g ⁻¹ (10 A g ⁻¹)	S5
Bi ₂ O ₃	Room- temperature wet chemical method.	Ni foam	155 mAh g ⁻¹ (0.4 A g ⁻¹)	58 mAh g ⁻¹ (1.8 A g ⁻¹)	S4
Bi ₂ S ₃	Hydrothermal and calcination	S-NCNF	466 F g ⁻¹ (1 A g ⁻¹)	299 F g ⁻¹ (8 A g ⁻¹)	S3
FeOOH	Electrodeposition	Polyamide Nanofiber Film	315 F g ⁻¹ (0.5 A g ⁻¹)	194 F g ⁻¹ (10 A g ⁻¹)	S2
Bi ₂ O ₃	Hydrothermal	Ni foam	447 F g ⁻¹ (2A g ⁻¹)	260 F g ⁻¹ (10 A g ⁻¹)	S 1
Material	Fabrication method	current collector	Specific capacitance or capacity	Rate performance	Reference

Table S1. Comparison of the electrochemical properties of the Bi_2O_3/Bi_2Se_3 NFs withpreviously reported negative electrode materials.

Fig. S10. Cyclic stability of the Bi_2O_3/Bi_2Se_3 NFs Bi_2O_3 NSs and Bi_2Se_3 NSs negative electrode materials over 3000 cycles at 8 A g⁻¹.

Fig. S11. XPS survey spectrum of the of the NiCoSe₂/Ni_{0.85}Se NPs.

Fig. S12. Specific capacitance of the $NiCoSe_2/Ni_{0.85}Se$ NPs as a function of current densities

Material	Fabrication method	current collector	Specific capacitance or capacity	Rate performance	Reference	
(Ni,Co)Se ₂ /NiCo	Calcination and	Carbon	Carbon 170 mAh g ⁻¹ (2 A g ⁻		<u><u> </u></u>	
-LDH	electrodeposition	substrate	1)	(20 A g ⁻¹)	511	
CoNi MOE	Hydrothermal and	Ni foom	$1044 \text{ E g}^{-1} (2 \text{ A g}^{-1})$	569 F g ⁻¹ (32A	S12	
CONI-MOF	calcination	INI IOdili	1044 F g · (2 A g ·)	g-1)		
CoNi-S	Chemical	Ni foam	$1530 \text{ F s}^{-1} (1 \text{ A s}^{-1})$	1346 F g ⁻¹ (8 A	\$13	
0111254	deposition	IN Iodili	15501 g (1 A g)	g-1)	515	
NiCo ₂ O ₄ /CNT	Calcination	Ni foam	1596 F g ⁻¹ (1 A g ⁻¹)	1406 F g ⁻¹ (10 A g ⁻¹)	S14	
Ni ₃ S2	Hydrothermal	Ni foam	70 mAh g ⁻¹ (2mA cm ⁻²)		S15	
CoNiSe ₂	Solvothermal and calcination	Ni foam	750 F g ⁻¹ (1 A g ⁻¹)	660 F g ⁻¹ (20 A g ⁻¹)	S16	
NiSe ₂	Plasma-exfoliation	Ni foam	466 F g ⁻¹ (3 A g ⁻¹)	328 F g ⁻¹ (20 A g ⁻¹)	S17	
NiCo ₂ O ₄	Hydrothermal and calcination	Carbon cloth	1055 F g ⁻¹ (0.4 A g ⁻¹)	483 F g ⁻¹ (10 A g ⁻¹)	S18	
Co ₃ O ₄ /Ni-based MOFs	Hydrothermal	Carbon cloth	209 mAh g ⁻¹ (2 A g ⁻ ¹)	~58 mAh g ⁻¹ (10 A g ⁻¹)	S19	
Co ₃ O ₄ /Co(OH) ₂	Hydrothermal	polyethyle ne naphthalate	184.9 mAh g ⁻¹ (1 A g ⁻ ¹)	129.4 mAh g ⁻¹ (16 A g ⁻¹)	S20	
NiCoSe ₂ /Ni _{0.85} Se	Electrodeposition	Graphite substrate	248.4 mAh g ⁻¹ (1788 F g ⁻¹) at 1 A g ⁻¹	208 mAh g ⁻¹ (1500 F g ⁻¹) at 100A g ⁻¹	In this work	

Table S2. Electrochemical performances comparison of the $CoNiSe_2/Ni_{0.85}Se$ NPswith other Ni-Co compound based positive electrodes fabricated by different methods.

Fig. S13. Nyquist plot of the NiCoSe $_2$ /Ni $_{0.85}$ Se NPs hybrid electrode.

Fig. S14. Cyclic stability of the NiCoSe₂/Ni_{0.85}Se NPs hybrid positive electrode materials over 3000 cycles at 10 A g⁻¹.

Fig. S15. The Nyquist plot of the device.

ASC devices	Cell voltage	Cycle performance	Reference
Fe ₂ O ₃ -P//MnO ₂	1.6	88% retention after 9000 cycles	S21
MnO ₂ //Fe ₂ O ₃	2.2	83% retention after 3000 cycles	S22
Co ₃ O ₄ //γ-Fe ₂ O ₃	1.7	80.1% retention after 5000 cycles	S23
Ni-Co-S-W/NF//AC/NF	1.8	91.7% retention after 6000 cycles	S24
MnO ₂ /CNT//CNT/PPy	80% re MnO ₂ /CNT//CNT/PPy 1.5		S25
Ni-Co-N/GP//GOP	1.5	95% retention after 5000 cycles	S26
NF@NiO//FeOOH HSCs	1.7	84.7% retention after10000 cycles	S27
ZnNiCo-P//PPD-rGOs	1.6	89% retention after 8000 cycles	S28
NiO-CuO//PGH	1.6	90.4% retention after 5000 cycles	S29
CC/H-Ni@Al-Co-S//graphene/CNT	1.8	90.6% retention after 10000 cycles	S30
Bi ₂ O ₃ /Bi ₂ Se ₃ //NiCoSe ₂ /Ni _{0.85} Se	1.6	91.5% retention after 10000 cycles	In this work

Table. S3 Cycle performance comparison of the assembled AAB with other state-of-the-art devices with various positive and negative electrodes.

References

- S1 N. Shinde, Q. Xia, J. Yun, R. Mane and K. Kim, Acs Appl. Mater. Interfaces, 2018, 10, 11037.
- S2 T. Gao, Z. Zhou, J. Yu, D. Cao, G. Wang, B. Ding and Y. Li, ACS appl. mater. Interfaces, 2018, 10, 23834.
- S3 W. Zong, F. Lai, G. He, J. Feng, W. Wang, R. Lian, Y. Miao, G. Wang, I. Parkin and T. Liu, *Small*, 2018, 14, 1801562.
- S4 N. Shinde, Q. Xia, J. Yun, P. Shinde, S. Shaikh, R. Sahoo, S. Mathur, R. Mane and K. Kim, *Electrochim. Acta*, 2019, 296, 308.
- S5 X. Yun, J. Li, Z. Luo, J. Tang and Y. Zhu, *Electrochim. Acta*, 2019, 302, 449.
- S6 D. Mandal, P. Routh and A. K. Nandi, *Small*, 2018, 14, 1702881.
- S7 C. Zhao, Y. Zhou, Z. Ge, C. Zhao and X. Qian, *Carbon*, 2018, **127**, 699.
- S8 Yang, Z. Han, F. Zheng, J. Sun, Z. Qiao, X. Yang, L. Li, C. Li, X. Song and B. Cao, *Carbon*, 2018, **134**, 15.
- S9 F. Li, H. Chen, X. Liu, S. Zhu, J. Jia, C. Xu, F. Dong, Z. Wen and Y. Zhang, J. Mater. Chem. A, 2016, 4, 2096.
- S10 J. Zhu, L. Li, Z. Xiong, Y. Hu and J. Jiang, ACS Sustainable Chem. Eng., 2017, 5, 269.
- S11 X. Li, H. Wu, C. Guan, A. Elshahawy, Y. Dong, S. Pennycook and J. Wang, Small, 2019, 15, 1803895.
- S12 T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang and W. Zheng, Adv. Energy Mater., 2018, 8, 1702294.
- S13 X. Cao, J. He, H. Li, L. Kang, X. He, J. Sun, R. Jiang, H. Xu, Z. Lei and Z. Liu, Small, 2018, 14, 1800998.

- S14 P. Wu, S. Cheng, M. Yao, L. Yang, Y. Zhu, P. Liu, O. Xing, J. Zhou, M. Wang and H. Luo, *Adv. Funct. Mater.*, 2017, 27, 1702160.
- S15 K. Tao, Y. Gong, Q. Zhou and J. Lin, *Electrochim. Acta*, 2018, 286, 65.
- S16 L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma, X. Sun, J. Sun, X. Zhang and C. Yuan, *Adv. Funct. Mater.*, 2018, 28, 1705921.
- S17 A. Chang, C. Zhang, Y. Yu, Y. Yu and B. Zhang, ACS appl. mater. Interfaces, 2018, 10, 41861.
- S18 C. Guan, X. Liu, W. Ren, X. Li, C. Cheng and J. Wang, *Adv. Energy Mater.*, 2017, 7, 1602391.
- S19 L. Zhang, Y. Zhang, S. Huang, Y. Yuan, H. Li ,Z. Jin , J. Wu, Q. Liao, L. Hu, J. Lu, S. Ruan and Y. Zeng, *Electrochim. Acta*, 2018, 281, 189.
- S20 G. Lee and J. Jang, J. Power Sources, 2019, 423, 115.
- S21 H. Liang, C. Xia, A. Emwas, D. Anjum, X. Miao and H. Alshareef, *Nano energy*, 2018, **49**, 155.
- S22 M. Zhang, Y. Li and Z. Shen, J. Power Sources, 2019, 414, 479.
- S23 R. Wang, Y. Sui, S. Huang, Y. Pu and P. Cao, Chem. Eng. J., 2018, 331, 527.
- S24 W. He, Z. Liang, K. Ji, Q. Sun, T. Zhai and X. Xu, Nano Res., 2018, 11, 1415.
- S25 J. Yu, W. Lu, J. Smith, K. Booksh, L. Meng, Y. Huang, Q. Li, J. Byun, Y. Oh and Y. Yan, Adv. Energy Mater., 2017, 7, 1600976.
- S26 F. Liu, L. Zeng, Y. Chen, R. Zhang, R. Yang, J. Pang, L. Ding, H. Liu and W. Zhou, *Nano Energy*, 2019, **61**, 18.
- S27 Q. Chen, J. Li, C. Liao, G. Hu, Y. Fu, O. K. Asare, S. Shi, Z. Liu, L. Zhou and L.

Mai, J. Mater. Chem. A, 2018, 6, 19488.

- S28 J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao, S. Dai, H.-H. Wu, K. Zhang, D. Ding and Y. Wu, *Nano Energy*, 2019, **57**, 22.
- S29 Z. Fang, S. ur Rehman, M. Sun, Y. Yuan, S. Jin and H. Bi, *J. Mater. Chem. A*, 2018, **6**, 21131.
- S30 J. Huang, J. Wei, Y. Xiao, Y. Xu, Y. Xiao, Y. Wang, L. Tan, K. Yuan and Y. Chen, *ACS nano*, 2018, **12**, 3030.