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Table S1. Surface composition and oxidation state of PtCuNi NPs from XPS analysis.
Sample Pt(II)/Pt(0) Cu(II)/(Cu(I)+ Cu(0)) Ni(II)/Ni(0)

PtCuNi o-NFs 0.52 0.45 2.17

PtCuNi c-NFs 0.86 0.72 2.78

PtCuNi h-NFs 0.89 0.46 0.88

PtCuNi HWs 0.53 0.74 3.97
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Table S2. Peak and onset potential of CO stripping on various catalysts.

sample onset potential of CO
oxidation vs SCE (V)

peak potential of CO
oxidation vs SCE (V)

PtCuNi c-NFs 0.39 0.52

PtCuNi o-NFs 0.43 0.60

PtCuNi h-NFs 0.59 0.65

PtCuNi HWs 0.61 0.69

PtCuNi th-NFs 0.59 0.64

Pt /C 0.62 0.70
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Table S3. Calculated adsorption energies (ΔE) of OH, H and CH3OH and d-band centers of 

Pt, Cu, and Ni on different metallic surfaces.  

ΔE (eV) εd (eV)
Surfaces

OH H CH3OH Pt Cu Ni

Pt(111) -2.54 -0.39 -0.65 -2.51 -- --

Pt1Cu5/3(111) -3.57 -0.17 -0.61 -2.24 -2.05 --

NixPt1Cu5/3(111) -3.68 -0.37 -0.55 -2.29 -2.05 -1.41

NixPt1Cu1(111) -3.33 -0.40 -0.52 -2.21 -1.91 -1.17

NixPt1Cu3(111) -3.67 -0.44 -0.52 -2.30 -2.07 -1.20

NixPt1Cu5/3(211) -3.88 -0.29 -0.38 -2.14 -1.87 -0.72
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Table S4. Performance comparison of MOR and FAOR over Pt-based catalysts with recent 

literatures

Specific activity 

(mA/cm2)

Mass activity 

(mA/μgPt)
Reference

Catalysts

CH3OH CHOOH CH3OH CHOOH

PtCuNi c-NFs 5.04 2.39 1.08 0.52 This work

PtCuNi o-NFs 4.68 2.04 0.51 0.23 This work

Pt–Mn–Cu CNC 4.13 1.87 0.42 0.19 [1]

Pt–Cu CNC 4.70 – – – [2]

Pt–Ni HOH 1.70 0.13 0.45 0.07 [3]

Pt–Pd CNC 8.50 – 0.32 – [4]

Pt–Cu–Ni CNC 1.97 1.50 0.11 0.07 [5]

Pt Concave – 3.70 – 0.18 [6]

Pt3V/C 0.38 – 0.20 – [7]

Pt3Ti/C 0.31 – 0.15 – [7]

PtAgCu@PtCu – 1.63 – 0.31 [8]

Pt–Co NWs 1.95 – 1.02 – [9]

Pt–Pd Hollow 1.36 – 0.58 – [10]
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Table S5. Comparison of the activity of commercial Pt in the literatures.

Specific activity (mA/cm2)
Catalysts

CH3OH CHOOH
References

0.46 0.16 This work

0.22 [11]

0.47 0.23 [12]

0.83 0.62 [13]

1.19 - [14]

0.56 - [15]

0.59 - [16]

0.46 - [17]

0.4 [18]

0.47 0.23 [19]

1.04 [20]

0.35 0.82 [21]

0.3 [22]

Pt/C

1.25 [23]
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Figure S1. (a–b) TEM, size-distribution histogram (inset), (c–f) HRTEM and FFT images of 

PtCuNi h-NFs. (g) HAADF-STEM and (h–j) EDS mapping images of PtCuNi h-NFs. (k–m) 

TEM images and structural models of PtCuNi h-NFs viewed along the (k) [111], (l) [111], 

and (m) [100] directions.
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Figure S2. (a) HAADF-STEM and (b-f) EDS-mapping images of PtCuNi o-NFs.
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Figure S3. (a–c) TEM, size-distribution histogram (inset), FFT (inset), (d) step atoms, and (e, 

f) interfacial dislocation images of PtCuNi c-NFs. (g) HAADF-STEM and (h–j) EDS 

mapping images of PtCuNi c-NFs. (k–m) TEM images and structural models of PtCuNi c-

NFs viewed along the (k) [111], (l) [111], and (m) [100] directions.
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Figure S4. (a-d) TEM images, size-distribution histogram of PtCuNi HWs. (e) The HRTEM, 

(f) corresponding FFT, and (g-k) EDS-mapping images of PtCuNi HWs.
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Figure S5. XPS spectra of (a) Cu 2p and (b) Ni 2p for PtCuNi with different structures.
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Figure S6. Study of the interaction between (a-c) I‾, (d-f) glycine and (g-i) ethanolamine and 

Pt(IV), Cu(II) and Ni(II) ions by UV–vis spectroscopy at room temperature.
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Figure S7. The study of the reaction between H2PtCl6 and NaI.
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Figure S9. The study of the reaction between Cu(II) and NaI. 
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22 ICuI2CuI2 CuII2Cu 2  
          (Equation S4)CuII2Cu 2  

22 ICuI2CuI2 

2
0 ICu2CuI2 

          (Equation S5)

It can be found from the starch reaction that the reaction of Cu2+ and I‾ produces I2. 

According to reference, the reaction of Cu2+ and I‾ first generates CuI2. The CuI nanocrystals 

have poor stability, and further formation of CuI and I2.
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Figure S10. TEM images investigating the course of morphological evolution for PtCuNi 

with the absence of NaI. (a1)–(a4) represent the reaction time at 1, 5, 20, and 30 min, 

respectively.
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Figure S11. XRD patterns of PtCuNi with different structures.
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Figure S12. The loss of peak current densities of MOR and FAOR as a function of the 

number of cycles on different electrocatalysts. The potential was scanned from −0.24 to 1.0 V 

(vs SCE) with a sweep rate of 50 mV s-1.
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Figure S13. CO-stripping voltammograms (black line standing for first cycle, red line 

standing for second cycle) of these catalysts in 0.5 M H2SO4 at a scan rate of 50 mV/s.
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Cu(111)：-3.28eV

Figure S14. Side (upper panel) and top (lower panel) views of OH adsorption on Cu(111) 

surfaces, including corresponding adsorption energies. Dashed lines indicate the (4×4) 

supercell for (111) surfaces.
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Figure S15. TEM images of PtCuFe, PtCuCo, PtCuMn and PtCuCr alloy NFs synthesized 

with the similar method.
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Figure S16. The TEM images of Pt-based alloy after 1000 potential cycles for MOR (a, c, e 

and g) and FAOR (b, d, f and h). Notes: PtCuNi h-NFs (a and b), PtCuNi o-NFs (c and d), 

PtCuNi c-NFs (e and f) and PtCuNi HWs (g and h).
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Figure S17. O-metal bond lengths (in Å) of OH adsorption on (a) Pt(111), (b) Pt1Cu5/3(111), 

(c) Pt1Cu5/3Nix (111), (d) Pt1Cu3Nix (111), (e) Pt1Cu1Nix (111) and (d) Pt1Cu5/3Nix (211) 

surfaces. 
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Figure S18. SEM images of h-NFs, o-NFs, c-NFs, and HWs PtCuNi.
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Figure S19. The TEM images of PtCuNi synthesized by the standard procedure, but with 

different NaI amount. (a) 0 mg, (b) 30 mg, (c) 80 mg, (d) 120 mg, (e) 150 mg, and (f) 400 mg.
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200 nm

Figure S20. The TEM images of PtCuNi synthesized by the standard procedure, but change 

the glycine with 300 mg glutamic acid.
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1 μm 200 nm

a b

Figure S21. TEM images of PtCuNi synthesized by the standard procedure, but varying the 

amount of CuCl2 and NiCl2, (a) CuCl2 2.0 mL, NiCl2 0.2 mL, (b) CuCl2 1.6 mL, NiCl2 0.4 mL.
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Figure S22. Cyclic voltammograms of methanol electro-oxidation for PtCuNi and Pt/C in a 

mixture of 0.5 M H2SO4 and 2 M CH3OH at a scan rate of 50 mV/s.
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Figure S23. Cyclic voltammograms of formic acid electro-oxidation over PtCuNi and Pt/C in 

a mixture of 0.5 M H2SO4 and 0.25 M HCOOH at a scan rate of 50 mV/s.
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Figure S24. (a) Cyclic voltammograms of methanol electro-oxidation for th-NFs and SHs 

PtCuNi in a mixture of 0.5 M H2SO4 and 2 M CH3OH at a scan rate of 50 mV/s. (b) Cyclic 

voltammograms of formic acid electro-oxidation in a mixture of 0.5 M H2SO4 and 0.25 M 

HCOOH at a scan rate of 50 mV/s.
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