Supporting Information (3 pages)

Depletion layer controls photocatalytic hydrogen evolution with p-type gallium phosphide particles

Zeqiong Zhao,[†] Emma J. Willard,[†] Julius R. Dominguez,[†] Zongkai Wu,[†] Frank E. Osterloh*,[†]

[†]Department of Chemistry, University of California Davis, One Shields Avenue, Davis,

California 95616, United States

Figure S1 (a) EDX mapping layered SEM image, (b) EDX spectrum and (c) EDX mapping of individual elements of obtained p-GaP particles.

Figure S2 Cyclic voltammetry measurement of (a) p-GaP wafer and (b) p-GaP particle film in 0.1 M K₂SO₄.

Figure S3 SPS spectra of p-GaP wafer with front side or back side illuminated.

Figure S4 SPS spectra of p-GaP particle films with different film thickness.

Figure S5 (a) PXRD pattern and (b) TEM image of Ni₂P capped with PVP.

Figure S6 (a) SEM and (b) EDX mapping of individual elements in optimized 4 wt% Ni_2P /p-GaP photocatalyst particles. According to energy dispersive X-ray analysis, the Ni_2P loading is 4.3 %.