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Figure S1. TG-DSC curves of the as-prepared H-NVO.

Note: As shown in Figure S1, the weight loss of about 3.3% before 150 ˚C belongs to 

the dehydration of physically absorbed water. After the temperature rises up to 280 

˚C, the additional weight loss of about 4.4% can be attributed to the desorption of 

crystal water in H-NVO. Based on this weight loss, it could be estimated that there 

are 1.52 crystal water in each formula unit of H-NVO, close to the theoretical value 

1.57, further evidencing the phase structure of H-NVO. When the temperature 

continuously rises up to 385.5 ˚C, the phase transition temperature as shown from 

the DSC curve, the framework of H-NVO starts to collapse accompanied with the 

release of NH3 due to the decomposition of the NH4
+ and V3O8 group. Finally, the 

pure V2O5 was obtained, as evidenced in the XRD patterns shown in Figure S2.
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Figure S2. Power XRD patterns of the as-prepared H-NVO after the heat treatment 

at varied temperatures for 3 h in flowing argon atmosphere.

Note: As shown in Figure S2, the (NH4)2V6O16·1.5H2O phase could be maintained 

when heat-treated at 220-240 ˚C. However, the intensities of the (002) peak located 

at 10.8º and the (112) peak located at 28.2º decreased with the elevated 

temperature, corresponding to the decrease of crystallinity. When heat-treated at 250 

and 260 ˚C, these two characteristic peaks disappeared accompanied by the 

appearance of a new characteristic peak located at 26.2º, which could be ascribed to 

the (101) lattice plane of V2O5. Finally, when heat-treated at 280 ˚C, the pure V2O5 

phase was obtained.  
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Figure S3. Power XRD patterns of the as-prepared NVO.
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Figure S4. FESEM of the as-prepared H-NVO.
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Figure S5. EDX spectrum of the as-fabricated H-NVO nanobelts.
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Figure S6. FESEM images of the as-prepared NVO. (A) low-magnification. (B) high-

magnification. 
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Figure S7. CV curves of the third cycle for H-NVO and NVO at the scan rate of 0.1 

mV s−1.
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Figure S8. Representative galvanostatic charge/discharge curves at various current 

rates of the H-NVO electrode.
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Figure S9. Rate capability at various current rates of the NVO electrode.
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Figure S10. The contribution of capacitive charge storage as a function of the 

potential at the scan rate of 0.6 mV s−1 calculated based on the k1 analysis.
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Figure S11. Schematic illustration of a signal step of the GITT measurement. The 

Zn2+ solid-state diffusion coefficient was obtained through the Galvanostatic 

Intermittent Titration Technique (GITT) measurement based on the following 

equation:
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Where τ is the constant current pulse time (s); nM and VM are the moles (mol) and 

molar volume (cm3 mol−1) of active material, respectively; S is the 

electrode/electrolyte contact area (cm2); ΔEs is the change in the steady-state voltage 

during a single step GITT experiment; ΔEt is the change in a total cell voltage after 

the application of a constant current pulse during a single step GITT experiment. In 

our GITT measurement, a cell was charged or discharged at the current density of 50 

mAh g-1 for 20 min, followed by a 1 h open circuit step to allow relaxation back to 

equilibrium.
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Figure S12. XRD patterns of the H-NVO electrode after 1st, 10th, 20th, 50th, and 100th 

cycles, respectively.
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Figure S13. FESEM images of the H-NVO electrode after 1st (a), 10th (b), 20th (c), 

50th (d), 100th (e) and 3000th (f) cycles, respectively.
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Table S1. Comparison of the electrochemical performances over previous reported 

cathode materials in aqueous zinc ion batteries.

Cathode materials Electrochemical performance Reference

(NH4)2V6O16·1.5H2O 152 mAh g−1 at 5 A g-1 (3000 cycles) This work

Na0.33V2O5 218.4 mAh g−1 at 1 A g-1 (1000 cycles) [1] 

Mg0.34V2O5·0.84H2O ca. 88 mAh g−1 at 5 A g-1 (2000 cycles) [2]

Zn3V2O7(OH)2·2H2O 101 mAh g−1 at 0.2 A g-1 (300 cycles) [3]

H2V3O8 136.1 mAh g−1 at 5 A g-1 (1000 cycles) [4]

NaV3O8·1.5H2O ca. 130 mAh g−1 at 4 A g-1 (1000 cycles) [5]

LiV3O8 172 mAh g−1 at 0.133 A g-1 (65 cycles) [6]

Na1.1V3O7.9@rGO 171 mAh g−1 at 0.3 A g-1 (100 cycles) [7]

K2V8O21 ca. 125 mAh g−1 at 6 A g-1 (300 cycles) [8]

α-Zn2V2O7 138 mAh g−1 at 4 A g-1 (1000 cycles) [9]

Fe5V15O39(OH)9·9H2O ca. 100 mAh g−1 at 5 A g-1 (300 cycles) [10]

Na3V2(PO4)3 72 mAh g−1 at 0.05 A g-1 (100 cycles) [11]

VO2 ca. 75 mAh g−1 at 3 A g-1 (5000 cycles) [12]

α-MnO2 ca. 92 mAh g−1 at 1.54 A g-1 (5000 cycles) [13]

β-MnO2 135 mAh g−1 at 2 A g-1 (2000 cycles) [14]

ZnMn2O4 ca. 80 mAh g−1 at 0.5 A g-1 (500 cycles) [15]

K0.8Mn8O16 ca. 150 mAh g−1 at 1 A g-1 (1000 cycles) [16]

α-Mn2O3 82.2 mAh g−1 at 2 A g-1 (1000 cycles) [17]

Mn3O4 106.1 mAh g−1 at 0.5 A g-1 (300 cycles) [18]

MnOx@N-C 100 mAh g−1 at 2 A g-1 (1600 cycles) [19]

VS2 110.9 mAh g−1 at 0.5 A g-1 (200 cycles) [20]

MoS2 88.6 mAh g−1 at 1 A g-1 (1000 cycles) [21]

Zn3[Fe(CN)6]2 ca. 80 mAh g−1 at 0.3 A g-1 (100 cycles) [22]

ZnHCF@MnO2 80 mAh g−1 at 0.5 A g-1 (1000 cycles) [23]
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