Supporting information

C₃N₄-digested 3D construction of hierarchical metallic phase MoS₂ nanostructures

Jiayu Wang¹, Jing Tang^{2*}, Tong Guo¹, Shuaihua Zhang^{3,4}, Wei Xia³, Haibo Tan³, Yoshio Bando³, Xin Wang^{1*} and Yusuke Yamauchi^{5*}

- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, Nanjing University of Science and Technology, 210094 Nanjing, China.
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China.
- 3. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, PR China.
- School of Chemical Engineering & Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.

Corresponding authors' email: <u>TANG.Jing@nims.go.jp</u>; <u>wangx@njust.edu.cn</u>; <u>y.yamauchi@uq.edu.au</u>

Figure S1. The selected range of XRD pattern of m-MS, m-CNMS-800 and bulk MoS₂.

Figure S2. SEM images of $(a, b) C_3N_4$ template and (c, d) m-MS.

Figure S3. The TEM images of m-CNMS at a low magnification.

Figure S4. High-resolution TEM images of m-CNMS and the corresponding lattice distance in selected regions.

Figure S5. The EDX spectrum of m-CNMS corresponding to the EDX mapping.

Figure S6. (a) Digital Photos of C_3N_4 after 160, 180, 190 and 200 °C hydrothermal reaction; (b) UV-Visible absorption spectra of C_3N_4 solution after different hydrothermal reaction.

Figure S7. SEM images of C_3N_4 templates with different morphologies and the corresponding prepared MoS₂ product. Note: bulk C_3N_4 was synthesized by calcining melamine at 550 °C in air; 1D C_3N_4 was synthesized by calcining nitric acid treated melamine at 550 °C in air; meso C_3N_4 was synthesized by calcining melamine-cyanuric acid hybrid at 550 °C in air.

Figure S8. XRD patterns of C_3N_4 templates with different morphologies and the corresponding prepared MoS_2 product.

Figure S9. CV curves for m-CNMS (a), m-MS (b), m-CNMS-800 (c) and bulk MoS₂ (d). The

capacitive current of all samples was collected at 0.05 V. Note: ECSA= Cdl / Cs. Cdl is calculated by CV at various scan rates in the non-Faradaic region, and Cdl is equal to the slope of the function of double layer charging current with scan rate. Cs is a specific electrochemical double layer capacitance of an atomically smooth surface, and the value of Cs = 40 μ F/cm² in this study.

Element	Мо	S	С	Ν	S/Mo	C/N
EDX	18.5 at. %	42.6 at. %	37.4 at. %	1.5 at. %	2.3	24.9
XPS	19.2 at. %	36.9 at. %	41.6 at. %	2.3 at. %	1.9	18.0

Table S1. Element content of m-CNMS from XPS and EDX.

Catalysts	morphology	Current	Overpotential at	Tafel	ECSA	Ref
		Density	corresponding j	slope	(cm ² _{ECSA})	
			mA cm ⁻² (mV)	(mVdec ⁻¹)		
1T MoS ₂	Flower-like	10	215	50.2	165	This
	sphere	80	260			work
1T-2H MoS ₂	nanosheet	20	320	65	60.3	1.
$2 H MoS_2$	Thin film with	10	210	44	/	2.
	vertically					
	aligned MoS ₂					
1T' MoS ₂	Nanofilm	10	175	100	/	3.
1T MoS ₂	Nanosheet	10	187	43	0.55	4.
1T MoS ₂	Mesoporous	10	153	43	1577	5.
	Nanosheet					
1T MoS ₂	Nanosheet	10	180	41	/	6.
$2 H MoS_2$	Nanofilm	250	400	50	/	7.
$2H MoS_2$	Mesoporous	10	210	74	/	8.
	foam					
Co_3S_4 $@MoS_2$	Hollow ZIF-like	10	210	88	202.5	9.
	structure					
2H-1T MoS ₂	vertically	10	203	60	/	10.
	aligned flakelet					
	on nanosheet					

Table S2. Comparison of HER performance of m-CNMS with other MoS₂-based electrocatalysts.

Reference

1. Wang S.; Zhang D.; Li B., Ultrastable In-Plane 1T–2H MoS₂ Heterostructures for Enhanced Hydrogen Evolution Reaction. *Adv. Energy Mater.* 2018, 8(25), 1801345.

 Wang H.; Lu Z.; Xu S., Electrochemical Tuning of Vertically Aligned MoS₂ Nanofilms and its Application in Improving Hydrogen Evolution Reaction. *Proc. Natl. Acad. Sci.* 2013, 110(49), 19701-19706.

3. Yu Y.; Nam G. H.; He Q., High Phase-Purity 1T'-MoS₂-and 1T'-MoSe₂-Layered Crystals. *Nature chem.* 2018, 10(6), 638.

4. Lukowski M. A.; Daniel, A. S.; Meng, F.; Forticaux A.; Li L.; Jin S, Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS₂ Nanosheets. *J. Am. Chem. Soc.* 2013, 135(28), 10274-10277.

5. Yin Y.; Han J.; Zhang Y, Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets, *J. Am. Chem. Soc.* 2016, 138(25), 7965-7972.

6. Geng X.; Sun W.; Wu W., Pure and Stable Metallic Phase Molybdenum Disulfide Nanosheets for Hydrogen Evolution Reaction, *Nature commun.* 2016, 7, 10672.

7. Voiry D.; Fullon R.; Yang J., The Role of Electronic Coupling between Substrate and 2D MoS₂ Nanosheets in Electrocatalytic Production of Hydrogen, *Nature Mater.* 2016, 15(9), 1003.

8. Deng J.; Li H.; Wang S., Multiscale Structural and Electronic Control of Molybdenum Disulfide Foam for Highly Efficient Hydrogen Production, *Nature commun.* 2017, 8, 14430.

9. Guo Y.; Tang J.; Qian H.; Wang Z.; Yamauchi Y, One-Pot Synthesis of Zeolitic Imidazolate Famework 67-Derived Hollow Co₃S₄@MoS₂ Heterostructures as Efficient Bifunctional Catalysts, *Chem. Mater.* 2017, 29(13), 5566-5573.

 Yang J.; Wang K.; Zhu J.; Zhang C.; Liu T, Self-Templated Growth of Vertically Aligned 2H-1T MoS₂ for Efficient Electrocatalytic Hydrogen Evolution. ACS Appl. Mater. Inter. 2016, 8(46), 31702-31708.