Supporting Information for

Yolk-shell $NiS_x@C$ nanosheets as K-ion battery anode with high rate capability and ultralong cycle life

Qianqian Yao,^a Jianshuo Zhang,^a Jiaxin Li,^b Weijian Huang,^b Kun Hou,^a Yi Zhao,^{*a}

Lunhui Guan*a

^aCAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China. E-mail: zhaoyi@fjirsm.ac.cn, guanlh@fjirsm.ac.cn

^bCollege of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China.

Fig. S1 (a-b) SEM images, and (c) XRD pattern of Ni(OH)₂ nanosheets.

Fig. S2 (a) SEM and (b) TEM images, and (c) TGA curve of Ni@C composite.

Fig. S3 TGA curves of Y-S Ni@C under different etch time.

Fig. S4 (a) TEM and (b) HRTEM images of Y-S Ni@C composite.

Fig. S5 TGA curves of NiS_x and Y-S NiS_x@C composite.

Fig. S6 (a) SEM, (b-c) TEM, and (d) HRTEM images of $NiS_x@C$ composite.

Fig. S7 (a) SEM, (b-c) TEM, and (d) HRTEM images of NiS_x .

Fig. S8 XRD pattern of NiS_x@C composite.

Fig. S9 XRD pattern of NiS_x .

Fig. S10 XPS spectra of Y-S $NiS_x@C$ composite: (a) survey spectrum, (b) C1s, (c) Ni 2p and (d) S 2p.

Fig. S11 (a, c) N_2 adsorption-desorption isotherms, (b, d) pore size distributions of (a-b) $NiS_x@C$ and (c-d) NiS_x .

Fig. S12 Discharge/charge profiles at selected cycles at 0.3 A g^{-1} of (a) Y-S NiS_x@C composite, (b) NiS_x@C composite, and (c) NiS_x for PIBs.

Fig. S13 (a) Discharge/charge profiles at selected cycles, and (b) cycle performance of carbon nanaosheets at 0.3 A g^{-1} . (c) Discharge/charge profiles at various densities, and (d) rate performance from 0.1 to 2.0 A g^{-1} of carbon nanosheets for PIBs

Fig. S14 Discharge/charge profiles at various current densities from 0.1 to 2.0 A g^{-1} of (a) NiS_x@C composite, and (b) NiS_x for PIBs.

Fig. S15 (a) CV cruves at various scan rates of initial state, and (b) contribution ratio of diffusion and pseudocapacity-controlled capacities of $NiS_x@C$ anode from 0.2 to 2.0 mV s⁻¹.

Fig. S16 (a-b) TEM images of Y-S $NiS_x@C$ electrode after cycles.

Materials	Current density (A g ⁻¹)	Cycle Number	Capacity (mAh g ⁻¹)	Rate Capability (mAh g ⁻¹ /A g ⁻¹)	Ref.
CoS@rGO	0.5	100	310	232/2.3	1
SnS ₂ -rGO	0.025	30	250	-	2
SnS ₂ @rGO	1.0	300	205	247/1.0	3
MoS ₂ @rGO	0.1	100	380	178/0.5	4
MoS ₂ /N-doped-C	0.05	30	330	131/2.0	5
MoS ₂ /C	0.05	35	391	164/2.0	6
MoS ₂ @SnO ₂ @C	0.05	25	312	86/0.8	7
FeS2@rGO	0.05	50	264	151/0.5	8
Fe ₃ S ₄ @C	0.1	100	226	139/1.0	9
ReS ₂ /N-CNFs	0.05	100	235	-	10
MoSe ₂ @N-C	0.1	100	258	218/0.5	11
MoS ₂ /C	0.1	50	239	123/0.8	12
Sb ₂ S ₃ -SNG	0.05	100	330	-	13
MoSe ₂ /C	1.0	1000	226	224/2.0	14
CoSe ₂ @NCT	0.2	100	253	196/2.0	15
VSe ₂ nanosheets	2.0	500	335	269/1.0	16
ReSe2@G@CNTs	0.2	200	230	157/2.0	17
FeP@CNBs	0.1	300	205	37/2.0	18
SnP _{0.96} @GO	0.2	100	106	57/1.0	19
Sn ₄ P ₃ @C	0.5	800	181	183/2.0	20
V ₂ O ₃ @PNCNFs	0.05	500	240	134/1.0	21
SnO ₂ -rGO	0.1	60	286	208/1.0	22
MoO ₂ /rGO	0.05	200	219	176/0.5	23
Sn@C	0.05	100	276	150/0.5	24
Sb/PC	0.5	200	90	70/2.0	25
Sb/rGO	0.5	200	210	222/1.0	26
3D SbNPs@C	1.0	50	225	288/1.0	27
Sb@C-3DP.	0.5	260	342	286/1.0	28

 Table. S1 Comparison of cycle and rate capabilities between Y-S NiSx@C composite and as-reported anode materials for PIBs.

Sb@NPMC	0.05	50	226	161/1.0	29
Y-S NiS _x @C	0.1	300	300	232/2.0	This work
	0.3	5000	173		
	0.5	8000	128		

Reference

- H. Gao, T. Zhou, Y. Zheng, Q. Zhang, Y. Liu, J. Chen, H. Liu and Z. Guo, *Adv. Funct. Mater.*, 2017, 27, 1702634.
- V. Lakshmi, Y. Chen, A. A. Mikhaylov, A. G. Medvedev, I. Sultana, M. M. Rahman, O. Lev, P. V. Prikhodchenko and A. M. Glushenkov, *Chem. Commun.*, 2017, 53, 8272-8275.
- L. Fang, J. Xu, S. Sun, B. Lin, Q. Guo, D. Luo and H. Xia, *Small*, 2019, 15, 1804806.
- K. Xie, K. Yuan, X. Li, W. Lu, C. Shen, C. Liang, R. Vajtai, P. Ajayan and B. Wei, *Small*, 2017, 13, 1701471.
- B. Jia, Q. Yu, Y. Zhao, M. Qin, W. Wang, Z. Liu, C.-Y. Lao, Y. Liu, H. Wu, Z. Zhang and X. Qu, *Adv. Funct. Mater.*, 2018, **30**, 1803409.
- B. Jia, Y. Zhao, M. Qin, W. Wang, Z. Liu, C.-Y. Lao, Q. Yu, Y. Liu, H. Wu, Z. Zhang and X. Qu, J. Mater. Chem. A, 2018, 6, 11147-11153.
- 7. Z. Chen, D. Yin and M. Zhang, *Small*, 2018, 14, 1703818.
- J. Xie, Y. Zhu, N. Zhuang, H. Lei, W. Zhu, Y. Fu, M. S. Javed, J. Li and W. Mai, *Nanoscale*, 2018, 10, 17092-17098.
- 9. Q. Yu, J. Hu, Y. Gao, J. Gao, G. Suo, P. Zuo, W. Wang and G. Yin, J. Alloys

Compounds, 2018, 766, 1086-1091.

- M. Mao, C. Cui, M. Wu, M. Zhang, T. Gao, X. Fan, J. Chen, T. Wang, J. Ma and C. Wang, *Nano Energy*, 2018, 45, 346-352.
- J. Ge, L. Fan, J. Wang, Q. Zhang, Z. Liu, E. Zhang, Q. Liu, X. Yu and B. Lu, *Adv. Energy Mater.*, 2018, **30**, 1801477.
- 12. D. Yin, Z. Chen and M. Zhang, J. Phy. Chem. Solids, 2019, 126, 72-77.
- 13. Y. Lu and J. Chen, Sci. China Chem., 2017, 60, 1533-1539.
- W. Wang, B. Jiang, C. Qian, F. Lv, J. Feng, J. Zhou, K. Wang, C. Yang, Y. Yang and S. Guo, *Adv. Mater.*, 2018, **30**, 1801812.
- Q. Yu, B. Jiang, J. Hu, C.-Y. Lao, Y. Gao, P. Li, Z. Liu, G. Suo, D. He, W. A.
 Wang and G. Yin, *Adv. Sci.*, 2018, 5, 1800782.
- C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin, K. Wang, Y. Zhang, Y. Yang, W. Wang, J. Li and S. Guo, *Adv. Mater.*, 2018, **30**, 1800036.
- 17. Y. Liao, C. Chen, D. Yin, Y. Cai, R. He and M. Zhang, *Nano-Micro Lett.*, 2019, 11, 2150-5551.
- F. Yang, H. Gao, J. Hao, S. Zhang, P. Li, Y. Liu, J. Chen and Z. Guo, *Adv. Funct. Mater.*, 2019, 29, 1808291.
- X. Zhao, W. Wang, Z. Hou, G. Wei, Y. Yu, J. Zhang and Z. Quan, *Chem. Eng.* J., 2019, **370**, 677-683.
- D. Li, Y. Zhang, Q. Sun, S. Zhang, Z. Wang, Z. Liang, P. Si and L. Ci, *Energy Storage Mater.*, 2019. 10.1016/j.ensm.2019.04.037.
- 21. T. Jin, H. Li, Y. Li, L. Jiao and J. Chen, *Nano Energy*, 2018, **50**, 462-467.

- Z. Huang, Z. Chen, S. Ding, C. Chen and M. Zhang, *Nanotechnology*, 2018, 29, 375702.
- C. Liu, S. Luo, H. Huang, Y. Zhai and Z. Wang, *ChemSusChem*, 2019, **12**, 873-880.
- K. Huang, Z. Xing, L. Wang, X. Wu, W. Zhao, X. Qi, H. Wang and Z. Ju, J.
 Mater. Chem. A, 2018, 6, 434-442.
- 25. H. Wang, X. Wu, X. Qi, W. Zhao and Z. Ju, Mater. Res. Bull., 2018, 103, 32-37.
- 26. Z. Yi, N. Lin, W. Zhang, W. Wang, Y. Zhu and Y. Qian, *Nanoscale*, 2018, **10**, 13236-13241.
- C. Han, K. Han, X. Wang, C. Wang, Q. Li, J. Meng, X. Xu, Q. He, W. Luo, L.
 Wu and L. Mai, *Nanoscale*, 2018, **10**, 6820-6826.
- J. Zheng, Y. Yang, X. Fan, G. Ji, X. Ji, H. Wang, S. Hou, M. R. Zachariah and C. Wang, *Energy Environ. Sci.*, 2019, **12**, 615-623.
- 29. L. Wang, J. Jia, Y. Wu and K. Niu, J. Appl. Electrochem., 2018, 10, 1115–1120.