Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Confinements of silver nanoparticles in polystyrenes through molecular entanglements and their application for catalytic reduction of 4-nitrophenol

Ping-Tsung Huang,*a Yu-Ning Chen, Kuan-Chung Chen, Shun-Huei Wu, Ching-Ping Liu*a

^a Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang

District, New Taipei City 24205, Taiwan.

* E-mail: 073802@mail.fju.edu.tw; 129723@mail.fju.edu.tw. Fax: 886-2-29023209

Synthetic procedures of PS-Ag NPs

Synthesis of poly(styrene-co-4VBCI)(PS-4VBCI) (1)

Styrene (5.148 g, 49.5 mmol) and 4-vinylbenzyl chloride (0.763 g, 5 mmol) were placed in a 20 mL sample vial containing 3 mL toluene. AIBN (0.005 g, 0.03 mmol) was added to the sample vial and reacted at 70°C for 60 hours. The polymer solution was precipitated from methanol several times to remove unreacted chemicals. The final poly(styrene-co-4VBC) is dried under vacuum at 50°C for overnight. White poly(styrene-co-4VBCI) (2.38 g, 40.2%) powder was collected. The ratio of styrene to vinylbenzylchloride in polymer is about 99:1 as revealed by NMR calculation.

Synthesis of poly(styrene-co-4VBSH) (PS-4VBSH)(2)

Poly(styrene-co-4VBCl) (1 g) was placed in a 250 mL round-bottom flask containing 100 mL THF and 10 mL H_2O . NaSH (0.028 g, 0.5 mmol) was added to the round bottom flask and reacted at 50°C for 20 hours. The polymer solution was precipitated from methanol several times to remove unreacted NaSH. The final poly(styrene-co-4VBSH) is dried under vacuum at 50°C for overnight. White poly(styrene-co-4VBSH) (0.428 g, 42.8 %) powder was collected. [

 \bar{M}_n =131,300, \bar{M}_w = 244,800].

Synthesis of PS-Ag NPs (3)

Poly(styrene-co-4VBSH) (1 g) was dissolved in a round-bottom flask containing 30 mL THF. Silver nitrate (0.085 g, 0.5 mmol) was dissolved in 10 mL H₂O and added to the poly(styreneco-4VBSH) solution. The mixed solution was stirred at room temperature for 2 hours and precipitate into H₂O twice. The final PS-Ag NP was dried under vacuum at 50°C for overnight. Lightly grey color PS-Ag NP (0.85 g, 85%) was obtained. The silver content were determined by using ICP-OES.

Fig. S1 NMR spectra of (a) PS-4VBCl, (b) PS-4VBSH, and (c) PS-AgNPs.

Fig. S2 NMR spectra of (a) PS-4VBCl, (b) PS-4VBSH, and (c) PS-AgNPs between $\delta = 3^{-5}$.

Fig. S3 FT-IR spectra of (a) PS-4VBCI, PS-4VBSH, and PS-AgNPs (b) characteristic peak of C-CI (c) characteristic peak of S-H and S-Ag.

Fig. S4 The XPS spectrum of Ag3d in H-PS-AgNPs.

Fig. S5 TEM photos and particle size distribution of (a) as-cast L-PS-AgNPs (0.102 wt%); (b) as-cast H-PS-AgNPs (0.873 wt%); (c) annealed L-PS-AgNPs (0.102 wt%); (d) annealed H-PS-AgNPs (0.873 wt%).

Fig. S6 The plot of c/c_0 versus time for the catalytic reduction of 4-NP by L-PS-AgNPs. The inset exhibited the linear fitting of the first-order kinetics. [4-NP]= 0.125 mM; [NaBH₄]= 15 mM; [Ag]= 5.8×10^{-4} mg mL⁻¹.

Fig. S7 The plot of c/c_0 versus time for the catalytic reduction of 4-NP by L-PS-AgNPs. The inset exhibited the linear fitting of the first-order kinetics. [4-NP]= 0.125 mM; [NaBH₄]= 15 mM; [Ag]= 5.8×10^{-5} mg mL⁻¹.

Fig. S8 The plot of c/c_0 versus time for the catalytic reduction of 4-NP by L-PS-AgNPs. The inset exhibited the linear fitting of the first-order kinetics. [4-NP]= 0.125 mM; [NaBH₄]= 15 mM; [Ag]=1.16×10⁻⁵ mg mL⁻¹.

Fig. S9 The plot of c/c_0 versus time for the catalytic reduction of 4-NP by L-PS-AgNPs. The inset exhibited the linear fitting of the first-order kinetics. [4-NP]= 0.125 mM; [NaBH₄]= 15 mM; [Ag]=1.16×10⁻⁶ mg mL⁻¹.

Catalysts	Linear range of [Ag] (mg mL ⁻¹)	The type of AgNP- based composite	Reference
L-PS-AgNPs	5.8×10 ⁻⁴ ~5.8×10 ⁻⁶		This work
AgNPs@PGMA-SH ^a	1.3×10 ⁻⁴ ~5.39×10 ⁻²	Covalent bonding	52
PEI-AgNPs ^b	6.61×10 ⁻² ~0.343	Encapsulation	66
Chitosan-AgNPs	5.39×10 ⁻² ~0.269		67
AgNPs/Triton	0.8~4		*
AgNPs/CA ^c	0.4~1.6		**
MC-Ag/SiO ₂ ^d	3.4×10 ⁻⁴ ~6.8×10 ⁻⁴		53

Table S1 Comparison of different AgNP-based nanocomposites as catalysts with their corresponding linear range of [Ag] for the catalytic reduction of 4-NP.

^a poly (glycidyl methacrylate) denoted as PGMA.

^b polyimide denoted as PEI.

^c calcium alginate denoted as CA.

^{*d*} microcapsule denoted as MC, and k_{app} was proportional to [Ag]².

* Bano M, Ahirwar D, Thomas M, Naikoo GA, Sheikh MU-D, Khan F, New J. Chem. 2016, 40, 6787-6795.

** Saha S, Pal A, Kundu S, Basu S, Pal T, *Langmuir* 2010, 26, 2885-2893.

Fig. S10 The plot of c/c_0 versus time for the catalytic reduction of 4-NP by H-PS-AgNPs. The inset exhibited the linear fitting of the first-order kinetics. [4-NP]= 0.125 mM; [NaBH₄]= 50 mM; [Ag]= 5.0×10^{-4} mg mL⁻¹.

Fig. S11 The plot of c/c_0 versus time for the catalytic reduction of 4-NP by H-PS-AgNPs. The inset exhibited the linear fitting of the first-order kinetics. [4-NP]= 0.125 mM; [NaBH₄]= 50 mM; [Ag]= 5.0×10^{-5} mg mL⁻¹.

Fig. S12 The plot of c/c_0 versus time for the catalytic reduction of 4-NP by H-PS-AgNPs. The inset exhibited the linear fitting of the first-order kinetics. [4-NP]= 0.125 mM; [NaBH₄]= 50 mM; [Ag]= 5.0×10^{-6} mg mL⁻¹.

Catalysts	[Ag] (mg mL ⁻¹)	t _o (min)	
H-PS-AgNPs	5.0×10 ⁻⁴	0.72 ± 0.25	
	5.0×10 ⁻⁵	3.67 ± 1.09	
	5.0×10 ⁻⁶	3.61 ± 0.96	
L-PS-AgNPs	5.8×10 ⁻⁴	15.33 ± 4.73	
	2.9×10 ⁻⁴	25.67 ± 9.07	
	5.8×10 ⁻⁵	28.67 ± 4.04	
	1.2×10 ⁻⁵	43.67 ± 3.79	
	5.8×10 ⁻⁶	49.33 ± 3.21	

Table S2 The various Ag content in H-PS-AgNPs and L-PS-AgNPs and the corresponding average values of t_0 during the catalytic reaction.