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Fig. S1 Schematic detailing the synthesis process for the MnXCoY-900 electrocatalysts.

As illustrated in Fig. S1, synthesis of the composite MnXCoY-900 samples comprised a two-

step process: (i) preparing the Prussian blue analogues (M3[Co(CN)6]2, M=Co2+ or Mn2+) by 

coprecipitation; (ii) annealing the PBA-MnXCoY at 900 °C in a nitrogen atmosphere to give 

the electrocatalytic material. When preparing the PBAs, the molar ratio of Mn/Co atoms in the 

structure was controlled by modifying the concentration of cobaltous nitrate and manganese 

nitrate in the reacting solution. Four samples were prepared with fixed total Mn/Co ratios of 

0:5, 1:4, 2:3 and 3:2 (PBA-Mn0Co5, PBA-Mn1Co4, PBA-Mn2Co3 and PBA-Mn3Co2, 

respectively). Annealing the PBA-MnXCoY precursors can produce MnXCoY-900 materials 

which was with different make-ups. N and C atoms within the PBA produce a N-doped carbon 

structure, integrated with the Co/Mn particles upon annealing.
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Fig. S2 The colour evolution of PBA precursors with different Mn/Co ratios (3:2, 2:3, 1:4, 0:5).

Fig. S3 SEM images of PBA precursors. (a) PBA-Mn0Co5, (b) PBA-Mn1Co4, (c) PBA-Mn2Co3, and 
(d) PBA-Mn3Co2.
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Fig. S4 XRD patterns of PBA precursors with different Mn/Co ratios.
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Fig. S5 SEM images of all resultant electrocatalysts with different Mn/Co ratios (a) Mn0Co-900, (b) 
Mn1Co4-900, (c) Mn2Co3-900, and (d) Mn3Co2-900.

Fig. S6 Overlapped Co, Mn, C, N and O EDX maps for Mn2Co3-900 and a corresponding elemental 
line scan. 
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Fig. S7 Raman spectra for Mn0Co-900, Mn1Co4-900, Mn2Co3-900, and Mn3Co2-900.
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Fig. S8 XRD patterns for Mn1Co4-T (T= 700, 800, 900), and magnification of the selected region within 
the XRD spectra.

Fig. S9 (a) BF-STEM image of Mn0Co-900; (b) High resolution BF-STEM image of single Mn0Co-900 
particle and corresponding lattice spacing.
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Fig. S10 (a) BF-STEM image and (b) HAADF-STEM-EDX mapping of Mn1Co4-900 at low 
maganification; (c-f) SEM image, BF-STEM image and HAADF-STEM-EDX mapping of single 
particle in Mn1Co4-900 at high magnification; (g) Percentage amount of each element in selected 
region (highlighted by grey square) according to HAADF-STEM-EDX mapping; (h) High-resolution 
BF-STEM image of single particle in Mn1Co4-900 and the corresponding lattice spacing.
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Fig. S11 HAADF-STEM-EDX mapping of Mn2Co3-900 at high maganification.
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Fig. S12 (a-f) HAADF-STEM-EDX mapping of typical CoMn@CN (containing Co:Mn alloy) particle 
integrated with MnO in Mn2Co3-900; (g) Corresponding high-resolution BF-STEM images and lattice 
spacing.
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Fig. S13 (a-b) BF-STEM images of Mn3Co2-900 at different maganifications (inset: corresponding 
SEM image); (c) HAADF-STEM-EDX mapping of Mn3Co2-900.
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Fig. S14 High resolution XPS spectra of (a) Mn 3s, (b) C1s and (c) N1s regions for Mn0Co-900, 
Mn1Co4-900, Mn2Co3-900, and Mn3Co2-900.
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Fig. S15 (a) Tafel plots of Mn0Co-900, Mn1Co4-900, Mn2Co3-900, and Mn3Co2-900 derived 
from LSV for ORR at high potential range; (b) Hydrogen peroxide yeild by Mn0Co-900, 
Mn1Co4-900, Mn2Co3-900, and Mn3Co2-900 collected from RRDE analysis during the ORR 
in O2 saturated 0.1 M KOH solution at 1600 rpm; (c) chronoamperometry curves of Mn2Co3-
900 in O2-saturated 0.1 M KOH solution at 0.5 V vs RHE for 40000s.

Fig. S16 (a-b) SEM images of Mn2Co3-900 after stability test for ORR at different 
magnifications; (b) XRD patterns of Mn2Co3-900 before and after ORR stability test.
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Fig. S17 Nitrogen adsorption-desorption isotherms for Mn0Co-900, Mn1Co4-900, Mn2Co3-900, and 
Mn3Co2-900.



S15

 
Fig. S18 CV curves within a potential window of 1.28 to1.36 V vs RHE without Faradaic processes at 
scan rates of 2, 5, 10, 20, 30, 40 and 50 mV s-1: (a) Mn0Co-900; (b) Mn1Co4-900; (c) Mn2Co3-900; and 
(d) Mn3Co2-900. (e) Current density at 1.34V vs RHE (taken from CV curves) in relation to scan rate.

The electrochemical double layer capacitance (EDLC) of all catalysts was measured within 

a potential range without Faradaic response to compare the electrochemical active surface area 

(ECSA) due to the proportional relation between EDLC and ECSA. Typically, a series of CV 

curves were generated at different scan rates (2, 5, 10, 20, 30, 40, and 50 mV s−1) within a 

potential range of 1.28–1.36 V. The EDLC was calculated by plotting the different anodic 

current at 1.34 V against the scan rates. The slope of the linear fitting line represented the 

EDLC, which indicates the tendency of the ECSA for the resulting catalysts.
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Fig. S19 Electron transfer number of (a) Mn2Co3-T (T=700, 800, 900, 1000) and (b) Mn2Co3-800 and 
Mn1Co4-800 for the ORR.

Fig. S20 Tafel plots of Mn0Co-900, Mn1Co4-900, Mn2Co3-900, Mn3Co2-900 and benchmark 
Ir/C for OER in 1.0 M KOH. 
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Fig. S21 Chronoamperometry curves of Mn2Co3-900 and Ir/C in 1 M KOH solution at 1.65 V 
vs. RHE.

Table S1 BET surface area and EDLC values for Mn0Co-900, Mn1Co4-900, Mn2Co3-900, and 
Mn3Co2-900.

Mn0Co5-900 Mn1Co4-900 Mn2Co3-900 Mn3Co2-900
BET surface area 

(m2/g) 57.7 37.8 52.3 39.9

EDLC (mF cm-2) 7.1 6.2 3.3 4.7

Table S2 Comparison of the ORR/OER performance between catalysts prepared in this 
work and other bifunctional catalysts from the literature.

ORR OER

Catalyst Loading 
(mg cm-2) Eonset

(V vs. 
RHE)

E1/2
(V vs. 
RHE)

I*
(mA cm-2)

E10mA cm-2
(V vs. 
RHE)

Ref.

MnO/Co/PGC 0.50 0.95 0.78 6 1.54 a 1

CoZn-NC-700 0.25 0.98 0.84 4.93 1.63b 2

Co9S8/CNT 0.2 0.94 0.82 5 1.60 b 3

NiFe-LDH/Co,N-CNF 0.12 0.89 0.79 5.1 1.54 b 4

FeCo/NPC 0.485 / 0.78 5.3 1.59 b 5

PPy/FeTCPP/Co 0.3 1.01 0.86 5.1 1.61 b 6

Co@Co3O4 /NC-1 0.21 / 0.8 5.1 1.65 b 7

PCN-CFP 0.2 0.94 0.67 / 1.63 b 8
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N, P, and F tri-doped
Graphene 0.5 0.9 0.76 5.5 1.8 b 9

ZnCo-PVP-900 0.28 0.92 0.83 5.3 1.63a 10

Mn0Co5-900 0.28 0.92 / / 1.62 a

Mn1Co4-900 0.28 0.89 0.73 4.1 1.64 a

Mn2Co3-900 0.28 0.91 0.76 5.8 1.65 a

Mn3Co2-900 0.28 0.90 0.75 4.8 1.66 a

Pt/C 0.28 0.95 0.83 5.4 /

Ir/C 0.28 / / / 1.56 a

This 
work

I* represents the limiting current density obtained at a rotation speed of 1600 rpm in RDE or RRDE.
a presents the electrolyte for OER is 1M KOH; while b is 0.1 M KOH.
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