Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

# **Supporting Information**

### Structure reorganization-controlled electron transfer of bipyridine derivatives as organic redox

couples

Yang Lv, <sup>a</sup> Yiyang Liu, <sup>a</sup> Ting Feng, <sup>a</sup> Jin Zhang, <sup>a</sup> Shanfu Lu, <sup>a</sup> Haining Wang<sup>\*a b</sup> and Yan Xiang<sup>\*a</sup>

<sup>a</sup>Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment,

Beihang University, Beijing 100191, P. R. China. E-mail: hwang@buaa.edu.cn; xiangy@buaa.edu.cn

<sup>b</sup>Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA

# **Table of Contents**

| The <sup>1</sup> H-NMR spectra of DQ <sup>2+</sup> , MV <sup>2+</sup> and DM <sup>2+</sup> | 3-5   |
|--------------------------------------------------------------------------------------------|-------|
| Electrochemical measurement and schematic diagram for                                      |       |
| reorganization energy theoretical calculation                                              | 6-11  |
| Physical property of DQ <sup>2+</sup> , MV <sup>2+</sup> and DM <sup>2+</sup>              | 12    |
| Single cell test                                                                           | 13-18 |
| References                                                                                 | 19    |



**Figure S1.** <sup>1</sup>H NMR spectrum of DQ<sup>2+</sup>. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  = 9.17 (d, J=6.0, 2H),

8.94 (d, J=8.0, 2H), 8.86 (td, J=8.1, 1.1, 2H), 8.38 – 8.29 (m, 2H), 5.31 (s, 2H).



**Figure S2.** <sup>1</sup>H NMR spectrum of MV<sup>2+</sup>. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O) δ = 8.95 (d, *J*=6.7, 2H), 8.42 (d, *J*=6.5, 2H), 4.41 (s, 3H).



Figure S3. <sup>1</sup>H NMR spectrum of DM<sup>2+</sup>. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O) δ = 9.17 (d, *J*=6.0, 2H),
8.79 (t, *J*=7.9, 2H), 8.34 (t, *J*=7.7, 4H), 4.15 (s, 6H).



**Figure S4.** (a) The cyclic voltammograms curves of 5 mmol L<sup>-1</sup> DM<sup>2+</sup> in 0.5 mol L<sup>-1</sup> NaCl solution under different scanning rates. (b) The plots of napierian logarithm of cathodic peak current versus the difference between the cathodic potentials and formal potentials for DM<sup>2+</sup>. (c) The open circuit potential of DM<sup>2+</sup> in 0.5 mol L<sup>-1</sup> NaCl solution (the concentration of DM<sup>2+</sup> and DM<sup>+•</sup> are both 5 mmol L<sup>-1</sup>.)



**Figure S5.** The schematic diagram for reorganization energy calculation based on Marcus-Hush theory.  $E^{+\bullet}$  and  $E^{2+}$  are the energy of the radical cation molecule and dication molecule respectively.  $E^{2+}$  is the energy of the radical cation molecule with the optimized geometry of the dication molecule, and  $E^{+\bullet}$  is the energy of the dication molecule with the optimized geometry of the radical cation molecule.



**Figure S6.** (a) The linear sweep voltammograms curves of 5 mmol L<sup>-1</sup> DQ<sup>2+</sup> in 0.5 mol L<sup>-1</sup> NaCl solution with the rotation rates varies from 100 to 1600 rpm. (b) The Levich plots of the limiting currents versus the square root of rotation rates for DQ<sup>2+</sup>. (c) The plots of logarithm of kinetic currents versus the over potentials and the corresponding fitted Tafel plots for DQ<sup>2+</sup>.



**Figure S7.** (a) The linear sweep voltammograms curves of 5 mmol L<sup>-1</sup> MV<sup>2+</sup> in 0.5 mol L<sup>-1</sup> NaCl solution with the rotation rates varies from 100 to 1600 rpm. (b) The Levich plots of the limiting currents versus the square root of rotation rates for MV<sup>2+</sup>. (c) The plots of logarithm of kinetic currents versus overpotentials and the corresponding fitted Tafel plots for MV<sup>2+</sup>.



**Figure S8.** (a), (b) Cyclic voltammograms of 5 mmol L<sup>-1</sup> DQ<sup>2+</sup> in 0.5 mol L<sup>-1</sup> NaCl solutions at different scanning rates. (c) Plot of  $\Psi$  vs.  $\nu^{-1/2}$  toward DQ<sup>2+</sup> (The linear relationship was shown with scan rates of 20 to 5000 mV s<sup>-1</sup>).



**Figure S9.** (a) The cyclic voltammograms cures of 5 mmol  $L^{-1} DQ^{2+}$  in 0.5 mol  $L^{-1} NaCl$  solution under different scanning rates. (b) The variation peak currents as a function of the square root of the scan rates of  $DQ^{2+}$ .

Physical property of  $DQ^{2+}$ ,  $MV^{2+}$  and  $DM^{2+}$ 



**Figure S10.** The photograph of 0.0325 mmol L<sup>-1</sup>  $DQ^{2+}$ ,  $MV^{2+}$ ,  $DM^{2+}$  and their monocation radicals species.



Figure S11. The standard curves of DQ<sup>2+</sup> by UV-Vis spectrophotometry measurements.

### Single cell test



**Figure S12.** A schematic of the  $DQ^{2+}/4$ -HO-TEMPO total neutral-aqueous organic redox flow battery.



**Figure S13.** (a) The cyclic voltammograms curves of 5 mmol L<sup>-1</sup> 4-OH-TEMPO in 0.5 mol L<sup>-1</sup> H<sub>2</sub>SO<sub>4</sub> solutions. (b) The pH values of electrolyte during 150 cycles (Negative electrolyte: 0.2 mol L<sup>-1</sup> DQ<sup>2+</sup> + 1.0 mol L<sup>-1</sup> NaCl; Positive electrolyte: 0.2 mol L<sup>-1</sup> 4-OH-TEMPO + 1.0 mol L<sup>-1</sup> NaCl).



Figure S14. The molecular formula of the anion exchange membrane.



**Figure S15.** (a) The standard curves of 4-OH-TEMPO by UV-Vis spectrophotometry measurements. (b) Concentration of 4-OH-TEMPO in NaCl solution varied with time for QAPPT membrane. (c) Concentration of DQ<sup>2+</sup> in NaCl solution varied with time for QAPPT membrane. (d) Post-cycling CV analysis of anode and cathode solutions after 50 cycles. (Active material in each anode or cathode electrolyte diluted to 5 mmol L<sup>-1</sup>

in 0.5 mol L<sup>-1</sup> NaCl supporting electrolyte, 50 mV s<sup>-1</sup> scan rate, glassy carbon working electrode, glassy carbon counter electrode, saturated calomel reference electrode.)



**Figure S16.** Post-cycling <sup>1</sup>H NMR analysis of anode electrolyte after 50 cycles. (50  $\mu$ L electrolyte diluted into 1000  $\mu$ L D<sub>2</sub>O. Residual H<sub>2</sub>O from the electrolyte causes a strong solvent absorption at 4.79 ppm. The signal intensity in anode electrolyte was increased to show no detectable 4-OH-TEMPO within the noise threshold of the instrument. Besides, there is no impurity peak detected in the anode electrolyte, which means DQ<sup>2+</sup> is stable in single cell test.)



**Figure S17.** The cell performance with 0.2 mol L<sup>-1</sup> MV<sup>2+</sup> + 1 mol L<sup>-1</sup> NaCl + 0.025 mol L<sup>-1</sup> NaH<sub>2</sub>PO<sub>4</sub> as negative electrolyte and 0.2 mol L<sup>-1</sup> 4-OH-TEMPO + 1 mol L<sup>-1</sup> NaCl + 0.025 mol L<sup>-1</sup> NaH<sub>2</sub>PO<sub>4</sub> as positive electrolyte (a) The charge and discharge curves for the AORFBs of MV<sup>2+</sup> at different current densities. (b) and (c) The columbic efficiency (CE), voltage efficiency (VE) and energy efficiency (EE) of the AORFBs of DQ<sup>2+</sup> or MV<sup>2+</sup> in different current densities.

**Table S1**. The compare among the viologen derivatives and 2,2'-bypiridine derivatives used in aqueous redox flow battery

| Ref                                                                        | 1                               |                                 | 2                                                                                           | m                            |                      | 4                        |
|----------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------------------------------------------------------------------|------------------------------|----------------------|--------------------------|
| Energy<br>efficiency (%)                                                   | ~45<br>@100 mA cm <sup>-2</sup> | ~43<br>@100 mA cm <sup>-2</sup> | ~62.5<br>@100 mA cm <sup>-2</sup>                                                           | ~44<br>@100 mA cm²           | 45                   | @100 mA cm <sup>-2</sup> |
| Capacity<br>Retention<br>/Cycle<br>(%)                                     | ~99.99                          | 99.88                           | ~99.963                                                                                     | 99.9989                      |                      | 99.82                    |
| Cycle times                                                                | 100<br>(0.1 M/ 0.1 M)           | 100<br>(0.5 M/ 0.5 M)           | 100<br>(2.0 M/ 2.0 M)                                                                       | 500<br>(0.75 M/<br>1.0 M)    | 50                   | (0.25 M/<br>0.5 M)       |
| Realized<br>Energy<br>Density of<br>( Wh L <sup>-1</sup> )                 | ~6.4                            | @40mA cm <sup>-2</sup>          | 38<br>@25mA cm <sup>-2</sup>                                                                | 13<br>@25mA cm <sup>-2</sup> | 7.1                  | @40mA cm <sup>-2</sup>   |
| k <sup>0</sup> of<br>negative<br>material<br>(cm·s <sup>-1</sup> )         | 2 8×10 <sup>-4</sup>            |                                 | 3.3×10 <sup>-3</sup>                                                                        | 2.2×10 <sup>-2</sup>         | > 0.36               | > 0.36                   |
| <i>D</i> of<br>negative<br>material<br>(cm <sup>2</sup> ·s <sup>-1</sup> ) | 2 €×10 <sup>-5</sup>            |                                 | 5.7×10 <sup>-6</sup>                                                                        | 3.3×10 <sup>-6</sup>         | 5.4×10 <sup>-6</sup> | 5.3×10 <sup>-6</sup>     |
| Volta<br>ge(V)                                                             | 1 75                            |                                 | 1.4                                                                                         | 0.75                         | 1                    | 1.38                     |
| Positive<br>Electrolyte                                                    | P                               | zo                              | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |                              | CI_N                 | Fe                       |
| Negative<br>Electrolyte                                                    |                                 | с<br>с                          | G G V                                                                                       |                              |                      |                          |

|                                |                             | 1.44                   | 3.15× 10 <sup>-6</sup> | > 0.28               | ~8.0<br>@40mA cm <sup>-2</sup> | 50<br>(0.25 M/ 0.5<br>M) | 99.94 | ~39<br>@100 mA cm <sup>-2</sup> | D            |
|--------------------------------|-----------------------------|------------------------|------------------------|----------------------|--------------------------------|--------------------------|-------|---------------------------------|--------------|
| KI 1.0 3.26× 1                 | 1.0 3.26× 1                 | 3.26× 1                | 01– <sub>و</sub>       | > 0.28               | ~6.0<br>@60mA cm <sup>-2</sup> | 300<br>(0.5 M/ 2 M)      | 66.66 | 38<br>@100 mA cm <sup>-2</sup>  | ڡ            |
| 1.49 5.19× 10<br>KBr           | 1.49 5.19× 1(               | 5.19× 1(               | )-6                    | > 0.36               | 36.4                           | 200                      | N/A   | 67.4                            | 7            |
| 1.89 3.99× 10 <sup>-6</sup>    | 1.89 3.99× 10 <sup>-6</sup> | 3.99× 10 <sup>-6</sup> | .0                     | > 0.31               | @40mA cm <sup>-2</sup>         | (0.1 M/ 2 M)             |       | @100 mA cm <sup>-2</sup>        |              |
| 1.12 4.6×10 <sup>-6</sup>      | 1.12 4.6×10 <sup>-6</sup>   | 4.6×10 <sup>-6</sup>   |                        | 6.4×10 <sup>-3</sup> | ~4.4<br>@5mA cm <sup>-2</sup>  | 100<br>(0.5M/0.5M)       | 99.8  | ~85<br>@5 mA cm <sup>-2</sup>   | ø            |
| 0<br>1.18 6.2×10 <sup>-6</sup> | 1.18 6.2×10 <sup>-6</sup>   | 6.2×10 <sup>-6</sup>   |                        | 2.1×10 <sup>-2</sup> | 2.5<br>@40mA cm <sup>-2</sup>  | 100<br>(0.2M/0.2M)       | 99.95 | 67<br>@100 mA cm <sup>-2</sup>  | This<br>work |

### References

- 1. T. Liu, X. Wei, Z. Nie, V. Sprenkle and W. Wang, *Adv. Energy Mater.*, 2016, **6**, 1501449.
- 2. T. Janoschka, N. Martin, M. D. Hager and U. S. Schubert, *Angew. Chem. Int. Ed.*, 2016, **55**, 14427-14430.
- 3. E. S. Beh, D. De Porcellinis, R. L. Gracia, K. T. Xia, R. G. Gordon and M. J. Aziz, ACS Energy Lett., 2017, **2**, 639-644.
- 4. C. DeBruler, B. Hu, J. Moss, X. Liu, J. Luo, Y. Sun and T. L. Liu, *Chem*, 2017, **3**, 961-978.
- 5. J. Luo, B. Hu, C. Debruler and T. L. Liu, *Angew. Chem. Int. Ed.*, 2018, **57**, 231-235.
- 6. C. DeBruler, B. Hu, J. Moss, J. Luo and T. L. Liu, *ACS Energy Lett.*, 2018, **3**, 663-668.
- W. Liu, Y. Liu, H. Zhang, C. Xie, L. Shi, Y. G. Zhou and X. Li, *Chem Commun*, 2019, 55, 4801-4804.
- 8. J. Huang, Z. Yang, V. Murugesan, E. Walter, A. Hollas, B. Pan, R. S. Assary, I. A. Shkrob, X. Wei and Z. Zhang, *ACS Energy Lett.*, 2018, **3**, 2533-2538.