Supplementary Information

First Principle Calculations Study of α-MnO₂ as a Potential Cathode for Al-

Ion Battery Application

Muhammad Hilmy Alfaruqi,^{ab} Saiful Islam,^a Jun Lee,^a Jeonggeun Jo,^a Vinod Mathew,^a Jaekook Kim^{a*}

^aDepartment of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 61186, Republic of Korea

^bDepartemen Teknik Metalurgi, Universitas Teknologi Sumbawa, Jl. Raya Olat Maras, Sumbawa, Nusa Tenggara Barat 84371, Indonesia

* Corresponding author. Tel: +82-62-530-1703. Fax: +82-62-530-1699. E-mail: jaekook@chonnam.ac.kr (Jaekook Kim)

Fig. S1 Convergence test results for determination of the cut-off energy.^{S1-S3}

U	a (Å)	c (Å)
Without U	9.729144	2.843746
1	9.737103	2.854406
1.6	9.744911	2.861916
3	9.769505	2.881524
3.3	9.776334	2.886177
3.6	9.784281	2.891126
3.9	9.79276	2.896217
4	9.795763	2.897954
5	9.833247	2.916991
JCPDS No. 44-0141	9.7847	2.863

Table S1 Lattice parameters of α -MnO₂ calculated with and without *U* values and from JCPDS.

Fig. S2 Total density of state α -MnO₂ obtained using with and without U values.

Site	E (eV)		
2 <i>a</i>	-2.03		
2b	-0.66		
4 <i>c</i>	-4.03		
8 <i>h</i>	-5.43		

Table S2 Al insertion energies in the dilute concentration limit of α -Al_{0.04}MnO₂

Fig. S3 Density of states plot of α -MnO₂ phase using PBEsol functional with k-points of $6 \times 6 \times 6$.

Fig. S4 Density of states plot of α -MnO₂ phase using PBEsol functional with k-points of 20 × 20 × 20.

 Table S3 Bader charge analysis results.

Atom	Δ Charge	Atom	Δ Charge	Atom	Δ Charge
Mn1	0.002441	01	0.004545	O25	0.005473
Mn2	0.005624	O2	0.006329	O26	0.003704
Mn3	0.005739	03	0.02135	O27	0.003278
Mn4	0.001708	O4	0.00336	O28	0.001801
Mn5	0.009707	05	0.023711	O29	-0.00089
Mn6	0.006249	O6	0.019432	O30	0.001023
Mn7	0.001889	07	0.009143	O31	0.001609
Mn8	0.051787	08	0.056623	O32	-0.01583
Mn9	0.002556	09	0.035879	O33	0.004583
Mn10	0.005714	O10	0.007104	O34	0.006402
Mn11	0.005827	011	0.056004	O35	0.021388
Mn12	0.001844	O12	0.006272	O36	0.003415
Mn13	0.000692	O13	-0.00074	O37	0.10782
Mn14	-0.00083	O14	0.001179	O38	0.078464
Mn15	4.9E-05	015	0.001707	O39	0.026509
Mn16	0.006452	O16	-0.01593	O40	1.023389
Mn17	0.0193	O17	0.000891	O41	0.035935
Mn18	0.005329	O18	0.006259	O42	0.007073
Mn19	0.083862	019	-0.0004	O43	0.056061
Mn20	0.003217	O20	0.001863	O44	0.006257
Mn21	0.009836	O21	0.023716	O45	0.002687
Mn22	0.006327	O22	0.019353	O46	-0.00172
Mn23	0.002055	O23	0.009233	O47	0.002102
Mn24	0.052191	O24	0.056766	O48	0.00743

Fig. S5 Total energy variation as a function of time in the AIMD simulation at 300 K.

Fig. S6 Relaxed structure of K-doped α -MnO₂ phase.

Fig. S7 Total density of states of K-doped α -MnO₂ phase.

ESI Note I

We have performed test calculations for the Hubbard (*U*) parameter for Mn. Initially, we performed structural relaxation for α -MnO₂ using U = 1, 1.6, 3, 3.3, 3.6, 3.9, 4, 5 eV and without applying *U*. Some of the U values were selected based on previous reports.^{S4-S7} The obtained lattice parameters for U = 3.9 eV, which was used in the our calculation and is commonly used for the DFT studies of electrode materials, are reasonable and close to the standard JCPDS No. 44-0141. Furthermore, we also performed density of states (DoS) calculation for U = 3, 3.3, 3.6, 3.9 eV and without *U*. It can be seen that DoS results without applying *U*, the spin-down in the conduction band is located near the Fermi level, while after applying *U*, the spin-down in the conduction band moves further away from the Fermi level. We can observe also as the *U* values increase, the band gaps decrease.

References

- S1. C. Feigl, S.P. Russo, A.S. Barnard, Mol. Simulat., 2011, 37, 321.
- S2. B.S. Youmbi, S. Zékeng, S. Domngang, F. Calvayrac, A. Bulou, Ionics, 2012, 18, 371.
- S3. N. Pantha, K. Belbase, N.P. Adhikari, Appl. Nanosci., 2015, 5, 393.
- S4. Z. Yang, X. Wang, Y. Huang, Curr. Appl. Phys., 2015, 15, 1556.
- S5. Y. Crespo, N. Seriani, Phys. Rev. B, 2013, 88, 144428.
- S6. H. Ji, A. Urban, D.A. Kitchaev, D.-H. Kwon, N. Artrith, C. Ophus, W. Huang, Z. Cai, T. Shi, J.C. Kim, H. Kim, G. Ceder, *Nat. Commun.*, 2019, 10, 592.
- S7. D. Wang, L.-M. Liu, S.-J. Zhao, B.-H. Li, H. liu, X.-F. Lang, Phys. Chem. Chem. Phys., 2013, 15, 9075.