Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A visible-light-responsive metal-organic framework for highly efficient and selective photocatalytic oxidation of amines and reduction of nitroaromatics

Peiqi Chen, Zhifen Guo, Xin Liu, Hui Lv, Yan Che, Rong Bai, Yanhong Chi and Hongzhu Xing *

Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun, 130024, China.

E-mail: xinghz223@nenu.edu.cn

Figure S1. TG curve of 1.

Figure S2. FTIR spectra of 1 before and after reaction.

Figure S3. UV-Vis Transmission of 1

Figure S4. (a) Before reaction. (b) After benzylamine reaction. (c) After dibenzylamine reaction. (d) After nitrobenzene reaction.

Figure S5. (a) Reaction trace for the dehydrogenation of secondary amines. (b) Conversion and selectivity in different runs.

Figure S6. Formation of trace amount of benzaldehyde in the reaction of dibenzylamine and benzylamine at 1 h.

Figure S7. (a) Reaction trance for the photoreduction of nitrobenzene. (b) Conversion and selectivity in different runs.

Compound	1
empirical formula	Zn ₃ C ₆₄ H ₃₂ O ₁₀
formula weight	1157.07
crystal system	Monoclinic
space group	C2/m
a / Å	37.121(3)
b / Å	30.255(3)
c / Å	6.0011(5)
α / degree	90.0000
β / degree	94.396(3)
γ / degree	90.0000
V / Å ³	6720.0(10)
Z	2
F(000)	1172.0
θrange collected / degree	2.54 to 20.66
	-36≤h≤36
limiting indices	-30≤k≤30
	-5≤/≤5
Reflections collected / unique	7359/2359
data / restraints / parameters	3551/95/200
R (int)	0.0796
goodness-of-fit on F ²	1.041
Final <i>R</i> indices ([$l > 2\sigma(l)$])	$R_1 = 0.0550 \ wR_2 = 0.1477$
R indices (all data)	$R_1 = 0.0867 \ wR_2 = 0.1675$

Table S1. Crystal data and structural refinement of **1**.

	NH2 1, Visble light Solvent, O2	
Solvent	Time [h]	Yield. [%] ^b
MeCN	1	99
DMF	2	99
AcOEt	2	99
DMSO	4	99
EtOH	5	99
MeOH	6	99
CHCl ₃	6	99

Table S2. Solvent influence on photocatalytic self-coupling of benzylamines over 1.^a

^{*a*}Reaction conditions: 0.2 mmol benzylamines, 5 mg **1**, 1 mL solvent. ^{*b*}Determined by GC using *n*-decane as internal standard.

[NH2 1, visble light MeCN, 02	-	N	
Entry	Photocatalyst	O ₂	Light	Conv. [%] ^b
1	+	+	+	99
2 ^{<i>c</i>}	+	+	+	24
3	-	+	+	-
4	+	+	-	-
5 ^{<i>d</i>}	+	-	+	25
6 ^e	+	-	+	50
7 ^f	+	+	+	21
8^g	+	+	+	37
9 ^{<i>h</i>}	+	+	+	12

Table S3. Photocatalytic self-coupling of benzylamines under various conditions.^a

^{*a*}Reaction conditions: 0.2 mmol amine, 5 mg **1**, 1 mL MeCN, 60 min under visible light. ^{*b*}Determined by GC using *n*-decane as the internal standard. ^{*c*}ADBEB. ^{*d*}N₂. ^{*e*}Air. ^{*f*}TEOA was added a hole scavenge. ^{*g*}10 μ L TEMP was added as a singlet oxygen scavenge. ^{*h*}10 μ L DMPO was added as a superoxide radical scavenger.

Table S4.	Performances	of	visible-light-induced	self-coupling	of	benzylamine	using
MOFs pho	otocatalysts at r	00	m temperature.				

	NH ₂ p	hotocatalysts , visb solvent, O	le light	N	
catalyst	solven t	T [h]	Yield. [%]	TOF [h ⁻¹]	Refs
ZJU-56-0.2	CH_3CN	24	62	2.6	1
ZJU-56-0.6	CH₃CN	24	84	3.5	1
NH ₂ -MIL-125(Ti)	CH₃CN	12	73	5.3	2
In-MOF	DMSO	2.5	99	13.4	3
Zn-PDI	CH₃CN	4	74	18.5	4
PCN-222	CH_3CN	1	100	25.7	5
1	CH ₃ CN	1	99	45.8	This work

Table S5. Solvent influence on photocatalytic dehydrogenation of dibenzylamine over $\mathbf{1}^{a}$

	1, Visble light Solvent, O ₂	
Solvent	Time [h]	Yield. [%] ^b
DMF	2	99
DMSO	3	99
EtOH	6	60
CHCl₃	6	72
MeOH	6	67
AcOEt	6	57
MeCN	8	99

^aReaction conditions: 0.2 mmol secondary amines, 5 mg **1**, 1 mL solvent. ^bReactions were analysed by GC using *n*-decane as the internal standard.

Table	S6 .	Photocatalytic	dehydrogenation	of	dibenzylamine	under	various
condit	ions. ^a	1					

ĺ		$\frac{\text{Visble light}}{\text{DMF, O}_2}$		
Entry	Photocatalyst	O ₂	Light	yield. [%] ^b
1	+	+	+	99
2	-	+	+	-
3	+	+	-	-
4 ^c	+	-	+	-
5 ^{<i>d</i>}	+	-	+	30
6 ^e	+	+	+	28
7 ^f	+	+	+	59
8^g	+	+	+	48

^{*a*}Reaction conditions: 0.2 mmol amine, 5 mg **1**, 1 mL DMF, 2 hours under visible light. ^{*b*}Determined by GC using *n*-decane as the internal standard. ^{*c*}N₂. ^{*d*}Air. ^{*e*}TEOA was added a hole scavenge. ^{*f*}10 μ L TEMP was added as a singlet oxygen scavenge. ^{*g*}10 μ L DMPO was added as a superoxide radical scavenger.

Table S7. Performances of visible-light-induced dehydrogenation of dibenzylamine using various photocatalysts at room temperature.

$\frac{\text{photocatalysts, Visble light}}{\text{solvent, O}_2} \rightarrow \text{N}$						
Catalyst	Solvent	T [h]	Yield. [%]	TOF [h ⁻¹]	Refs	
BiVO ₄	CH₃CN	6	99.0	0.05	6	
BiOCI	CH ₃ CN	10	99.0	0.1	7	
Porous organic polymer (POP) CF-HCP	CH₃CN	6	80.6	6.0	8	
Rh/carbon nanotube	CHCl ₃ /H ₂ O	13	95	7.3	9	
Cu-based polyoxometalate	CH₃CN	16	95	12.5	10	
PCN-222	CH ₃ CN	1	100	25.7	5	
1	DMF	2	99	22.9	This work	

		1, Visble light EtOH, N ₂ H ₄ H ₂ O	NH ₂	
Entry	Photocatalyst	$N_2H_4 \cdot H_2O$	Light	Conv. [%] ^b
1	-	+	+	-
2	+	+	-	-
3	+	-	+	-
4	+	+	+	99
5 ^c	+	+	+	74
6 ^{<i>d</i>}	+	+	+	44

Table S8. Photoreduction of nitrobenzene under various conditions.^a

^aReaction conditions: 0.1 mmol nitrobenzene, 5 mg 1, 4mmol N₂H₄·H₂O, 1 mL EtOH, 4 hour under visible light. ^bDetermined by GC using *n*-decane as the internal standard. ^{*c*}3mmol N_2H_4 · H_2O . ^{*d*}5 mmol N_2H_4 · H_2O .

NO ₂ 1, Visble light Solvent, N ₂ H ₄ H ₂ O						
Solvent	T [h]	Yield. [%] ^b				
EtOH	4	99				
MeCN	6	99				
AcOEt	6	70				
DMSO	8	99				
DMF	8	99				
CHCl ₂	12	99				
CHCl ₃	12	53				

Table S9. Solvent influence on photoreduction of nitrobenzene over 1.^a

NH-

^aReaction conditions: 0.1 mmol nitrobenzene, 5 mg 1, 1 mL solvent, 4 mmol hydrazine. ^bReactions were analysed by GC using *n*-decane as the internal standard.

NO2 photocatalysts, Visble light Solvent							
Catalyst	Solvent	T [h]	Yield. [%]	TOF [h ⁻¹]	Refs		
CdS	water	4	99	1.4	11		
Eosin Y	EtOH/H₂O	24	99	4.2	12		
Ag/GO/LDH	Benzyl alcohol	4	47	7.0	13		
Au/GO/LDH	Benzyl alcohol	4	68	4.4	13		
AuAg/GO/LDH	Benzyl alcohol	3	91.6	10.9	13		
1	EtOH	4	99	5.8	This work		

Table S10. Performances of visible-light-induced photoreduction of nitrobenzeneusing various photocatalysts at room temperature.

References

1. H. Li, Y. Yang, C. He, L. Zeng and C. Duan, ACS Catal., 2019, 9, 422–430.

2. D. Sun, L. Ye and Z. Li, Applied Catalysis B: Environmental, 2015, 164, 428–432.

3. H. Wei, Z. Guo, X. Liang, P. Chen, H. Liu and H. Xing, *ACS Appl Mater Interfaces*, 2019, **11**, 3016–3023.

4. L. Zeng, T. Liu, C. He, D. Shi, F. Zhang and C. Duan, J. Am. Chem. Soc., 2016, 138, 3958–3961.

5. C. Xu, H. Liu, D. Li, J. H. Su and H. L. Jiang, Chem. Sci., 2018, 9, 3152–3158.

6. B. Yuan, R. Chong, B. Zhang, J. Li, Y. Liu and C. Li, Chem Commun., 2014, 50, 15593–15596.

7. Y. Wu, B. Yuan, M. Li, W. H. Zhang, Y. Liu and C. Li, *Chem. Sci.*, 2015, **6**, 1873–1878.

8. Y. Zhi, K. Li, H. Xia, M. Xue, Y. Mu and X. Liu, J. Mater. Chem. A, 2017, 5, 8697–8704.

9. D. V. Jawale, E. Gravel, N. Shah, V. Dauvois, H. Li, I. N. Namboothiri and E. Doris, *Chem. Eur. J.*, 2015, **21**, 7039–7042.

10.H. Yu, Y. Zhai, G. Dai, S. Ru, S. Han and Y. Wei, *Chem. Eur. J.*, 2017, 23, 13883–13887.

11. M. Kaur and C. M. Nagaraja, ACS Sustainable Chem. Eng., 2017, 5, 4293–4303.

12.X. J. Yang, B. Chen, L. Q. Zheng, L. Z. Wu and C. H. Tung, Green Chem., 2014, 16, 1082–1086.

13.M. Sahoo, S. Mansingh and K. M. Parida, J. Mater. Chem. A, 2019, 7, 7614–7627.