Supplementary Information for

Vertically-Aligned VS₂ on Graphene as 3D Heteroarchitectured Anode Materials with Capacitance-Dominated Lithium Storage

Zhiyong Huang,^{‡a} Xiaoyan Han,^{‡a} Xun Cui,^{bc} Chengen He,^{ac} Jinlong Zhang,^c Xianggang Wang,^c Zhiqun Lin,^{*b} and Yingkui Yang^{*ac}

^a Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China

E-mail: <u>ykyang@mail.scuec.edu.cn</u>

^b School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

E-mail: <u>zhiqun.lin@mse.gatech.edu</u>

^c Graphene R&D Centre, Guangdong Xigu Tanyuan New Materials Corporation Limited & South-Central University for Nationalities, Foshan 528000, China

[‡] These two authors equally contribute to this work.

Fig. S1 TGA curves of VS₂, graphene, and VS₂@Gr under an Air atmosphere.

Fig. S2 Typical SEM image of graphene oxide (GO).

Fig. S3 EDS spectrum of $VS_2@Gr$.

Fig. S4 Electrochemical performance of graphene anode: (a) CV curves at a scan rate of 0.2 mV s^{-1} , and (b) charge/discharge curves at 0.1 A g⁻¹ in the first three cycles.

Fig. S5 Charge/discharge curves of (a) VS_2 , (b) graphene, and (c) $VS_2@Gr$ at 1.0 A g⁻¹ for different cycles.

Fig. S6. SEM images of the VS₂@Gr electrode slice before (a) and after (b-d) running 150 cycles at 1 A g⁻¹.

 Table S1 A survey of lithium storage performance of graphene-containing transition

 metal dichalcogenide composites

Materials	Reversible capacity	Capacity retention	Rate capacity	References
Vertical MoS ₂ nanosheets on graphene	1000 mAh g ⁻¹ at 1 A g ⁻¹	1250 mAh g ⁻¹ after 150 cycles	1385 mAh g ⁻¹ at 0.1 A g ⁻¹ 970 mAh g ⁻¹ at 5 A g ⁻¹	<i>Adv. Energy Mater.</i> , 2017, 8 1702254
ReS ₂ nanosheets vertically aligned on graphene	600 mAh g ⁻¹ at 1 A g ⁻¹	343 mAh g ⁻¹ after 500 cycles	921 mAh g ⁻¹ at 0.2 A g ⁻¹ 375 mAh g ⁻¹ at 5 A g ⁻¹	<i>J. Mater. Chem. A</i> , 2018, 6 , 20267–20276
3D MoS ₂ /graphene nanovesicles	815 mAh g ⁻¹ at 0.5 A g ⁻¹	706 mAh g ⁻¹ after 200 cycles	964 mAh g ⁻¹ at 0.1 A g ⁻¹ 739 mAh g ⁻¹ at 1 A g ⁻¹	<i>Chem. Eng. J.</i> , 2018, 350 ,1066–1072
WS ₂ /carbon nanotube-graphene	656 mA h g ⁻¹ at 0.2 mAh g ⁻¹	572 mAh g ⁻¹ after 100 cycles	749 mAh g ⁻¹ at 0.1 A g ⁻¹ 337 mAh g ⁻¹ at 10 A g ⁻¹	<i>Adv. Energy Mater</i> . 2016, 1601057
MoS ₂ nanosheets on graphene	890 mAh g ⁻¹ at 1 A g ⁻¹	900 mAh g ⁻¹ after 400 cycles	1035 mAh g ⁻¹ at 0.2 A g ⁻¹ 890 mAh g ⁻¹ at 1 A g ⁻¹	<i>ACS Nano</i> , 2016, 10 , 8526–8535
VS ₄ particles homogenously wrapped by graphene	987.5 mAh g ⁻¹ at 0.2 A g ⁻¹	890.8 mAh g ⁻¹ after 80 cycles	987.5 mAh g ⁻¹ at 0.2 A g ⁻¹ 479.2 mAh g ⁻¹ at 4 A g ⁻¹	<i>J. Alloys. Compd.</i> , 2016, 685 , 294-299
MnS hollow microspheres on graphene	800 mAh g ⁻¹ at 1 A g ⁻¹	640 mAh g ⁻¹ after 400 cycles	1050 mAh g ⁻¹ at 0.3 A g ⁻¹ 580 mAh g ⁻¹ at 2 A g ⁻¹	<i>ACS Appl. Mater.</i> <i>Interfaces</i> , 2015, 7 , 20957–20964
WS ₂ nanosheets on graphene	740 mAh g ⁻¹ at 0.1 A g ⁻¹	416 mAh g ⁻¹ after 100 cycles	728 mAh g ⁻¹ at 0.1 A g ⁻¹ 323 mAh g ⁻¹ at 1 A g ⁻¹	<i>J. Mater. Chem. A</i> , 2015, 3 , 24128–24138
MoS_2 nanosheets on N-doped graphene	830 mAh g ⁻¹ at 0.5 A g ⁻¹	675 mAh g ⁻¹ after 450 cycles	934 mAh g ⁻¹ at 0.1 A g ⁻¹ 573 mAh g ⁻¹ at 1 A g ⁻¹	<i>Electrochim. Acta</i> , 2019, 308 , 217-226
Hollow MgS nanocrystals on graphene	1050 mAh g ⁻¹ at 5 A g ⁻¹	838 mAh g ⁻¹ after 3000 cycles	1208 mAh g ⁻¹ at 0.1 A g ⁻¹ 1000 mAh g ⁻¹ at 1 A g ⁻¹	<i>ACS Nano</i> , 2018, 12 , 12741–12750
MoS ₂ -carbon microflowers on graphene	700 mAh g ⁻¹ at 1 A g ⁻¹	600 mAh g ⁻¹ after 300 cycles	759 mAh g ⁻¹ at 0.1 A g ⁻¹ 375 mAh g ⁻¹ at 10 A g ⁻¹	<i>Energy Storage Mater.</i> , 2017, 9 , 195–205
3D porous MoS _x /graphene	1214 mAh g ⁻¹ at 0.1 A g ⁻¹	1504 mAh g ⁻¹ after 100 cycles	1214 mAh g ⁻¹ at 0.1 A g ⁻¹ 1016 mAh g ⁻¹ at 2 A g ⁻¹	<i>Small</i> , 2017, 14 , 1703096