Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

The *n*- and *p*-type thermoelectric response of semiconducting Co-based quaternary Heusler alloy: A Density Functional approach

Enamullah and Pil-Ryung Cha

School of Advanced Materials Engineering,

Kookmin University, Seoul, South Korea- 02707

Here, we provide the details of band structure and transport related coefficients obtained using the PBE and the HSE06 functional respectively.

1 Electronic structure using PBE functional

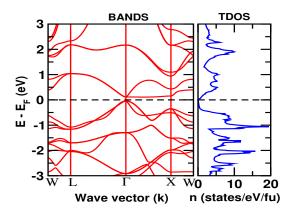


Figure 1: Electronic structure of CoFeTiAl using PBE exchange functional at relaxed lattice constant($a_{rlx} = 5.80$ Å). A small but finite band gap of 0.04 eV is obtained. Dashed line and TDOS represents the Fermi level(E_F) and total density of states respectively.

2 transport coefficients using hybrid functional (HSE06)

In this section, we present the optimal carrier concentration(*n*) at 900*K*, which corresponds to the maximum power factor[$(S^2\sigma/\tau)_{max}$] and upper limit of *ZT* [i.e. $(ZT_e)_{max}$] as depicted in table1.

HSE06	n	S	σ/ au	κ_e/ au	$(S^2\sigma/ au)_{max}$	$(S^2\sigma/ au)_{cal}$	$(ZT_e)_{max}$	$(ZT_e)_{cal}$
<i>n</i> -type	-0.0043	-6.68	0.0132	0.055		5.9×10^{10}	0.97	
<i>p</i> -type	0.0022	6.04	0.0103	0.036		3.74×10^{10}	0.94	
<i>n</i> -type	-1.65	-1.71	4.26	1.72	1.25×10^{12}			0.0007
<i>p</i> -type	9.14	0.913	11.9	3.17	9.96×10^{11}			0.0003

Table 1: The given values of transport coefficients $(n, S, \sigma/\tau, \text{ and } \kappa_e/\tau)$ are corresponding to the maximum power factor $[(S^2\sigma/\tau)_{max}]$ and upper limit of ZT [i.e $(ZT_e)_{max}$]. The other parameters, $[(S^2\sigma/\tau)_{cal}]$ and $(ZT_e)_{cal}$ are calculated from the given value of transport coefficients. The value of $n, S, \sigma/\tau, \kappa_e/\tau$, power factor are measured in 10^{21} cm⁻³, 10^{-4} V/K, $10^{19} (\Omega ms)^{-1}$ and $10^{15} W/Kms$ and W/K^2ms . ALL the transport coefficients are calculated under the HSE06 exchange functional at 900K.

From table1, it is clear that the carrier concentration obtained at maximum power factor $[(S^2\sigma/\tau)_{max}]$ does not corresponds to the maximum ZT [i.e. $(ZT_e)_{max}$] or, in other words, the values of *n* corresponding to $(S^2\sigma/\tau)_{max}$ and $(ZT_e)_{max}$ are different. For example, considering the *n*-type behavior, the optimal *n* corresponding to $(ZT_e)_{max}$ is -4.32×10^{18} cm⁻³ and the corresponding calculated power factor [i.e $(S^2\sigma/\tau)_{cal}$] is 5.9×10^{10} (W/K^2ms), which is different from the obtained value of maximum power factor $(1.25 \times 10^{12} W/K^2ms)$.