Supporting Information

Construction of highly fluorescent N - O sevenmembered heterocycles via thermo-oxidation of oxazolidines

 Tianyou Qin, ${ }^{\text {b }}$ Wenbin Gao, ${ }^{\text {b }}$ Lan Sheng, ${ }^{\text {bb }}$ and Sean Xiao-An Zhang*a,b

${ }^{\text {a }}$ State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China

E-mail: seanzhang@jlu.edu.cn; Fax: +86-431-85153812
${ }^{\mathrm{b}}$ College of Chemistry, Jilin University, Changchun, 130012, P. R. China
E-mail: shenglan17@jlu.edu.cn; Fax: +86-431-85153812
${ }^{\text {c }}$ Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education,School of Life Sciences, Jilin University, Changchun, 130012, P. R. China

Table of Contents

1. General experimental information S4
2. Synthesis of 2a-2f, I and $\mathbf{3}$ S6
3. ${ }^{1} \mathrm{H}$ NMR spectra monitoring heating $1 \mathrm{a}-1 \mathrm{f}$ in $\mathrm{DMSO}-d_{6}$. S11
4. Structural characterizations of intermediate product I of $1 b$ reacting with $\mathrm{CH}_{3} \mathrm{I}$ S12
5. ${ }^{1} \mathrm{H}$ NMR spectra monitoring heating I in DMSO- d_{6}. S13
6. Photographs of heating $\mathrm{CH}_{3} \mathrm{I}$ in DMSO. S14
7. HRMS spectra and ${ }^{1} \mathrm{H}$ NMR spectra monitoring reaction of 1 g and $\mathrm{CH}_{3} \mathrm{I}$ in DMF and DMSO- d_{6} at $120{ }^{\circ} \mathrm{C}$ S15
8. ${ }^{1} \mathrm{H}$ NMR spectra monitoring heating $\mathbf{1 b}-\mathrm{OF}$ in DMSO- \boldsymbol{d}_{6} S16
9. Comparison of $\mathbf{1 b}-\mathrm{OF}$ reaction in DMSO under aerobic and anaerobic conditions S18
10. Reaction of 1a-OF with $\mathrm{H}_{2} \mathrm{O}_{2}$ in DMF S19
11. Reaction of 1b-OF in DMSO/DMF with addition of radical inhibitor BHT S20
12. HRMS spectra for reaction solutions of 1b with NIS, NBS and NCS. 21
13. Crystal data and structure refinement for $2 a, 2 b, 2 c$ and 3 S22
14. Spectral data of $1 \mathrm{a}-\mathrm{OF}-1 \mathrm{f}-\mathrm{OF}$ and $2 \mathrm{a}-2 \mathrm{f}$ in DCM solutions and PMMA films S24
15. Fluorescent photographs of solid powders of 1a-OF-1f-OF, 2a-2f. S28
16. Solvent polarity effects on optical properties of 2a-2f. S29
17. Photographs, UV-Vis spectra and fluorescent spectra of 2a-2f in PMMA with different weight percent S32
18. Comparison of fluorescence quantum efficiency of 2 a and 2 c with $\mathrm{I}^{-}, \mathrm{Br}^{-}and\mathrm{PF}_{6}$.S34
19. Theoretical calculations of 2a-2f. S36
20. Photostability and thermal stability of 2a-2f. S37
21. HRMS spectra of $\mathbf{2 b - O H}$ and UV-Vis spectra measurement for switch property of 2b S39
22. Measurement of the pKa' of 2a-2f. S40
23. HRMS spectra monitoring reaction of 2 b and amines S41
24. The selectivity to $\mathbf{p H}$ of 2 b over reactive nitrogen and oxygen species S42
25. The cytotoxicity of 2 e S43
26. Effect of extracellular fluctuations under oxidative stress and with drug treatment on endocytosis efficiency and fluorescence of 2 e S44
27. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S45
28. The coordination of structures S53
29. References S62

1. General experimental information

Materials

Phenylhydrazine (98 \%), 4-nitrophenylhydrazine (98 \%), 4-methoxyphenylhydrazine hydrochloride (98 \%), 4-dimethylaminobenzaldehyde (99 \%) and diethyl malonate (99 \%) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). 3-Methyl-2-butanone (98 \%), 2-bromoethanol (98 \%), anisic aldehyde (99 \%), 4(Diethylamino)salicylaldehyde (98 \%), Iodomethane (99.5 \%), Iodine (98 \%) and N iodosuccinimide (98 \%) were purchased from Energy Chemical (Shanghai, China). Sodium chloride (NaCl), sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ were purchased from Beijing Chemical Factory (Beijing, China). Lyso Tracker Green and CellLight ${ }^{\text {TM }}$ Mitochondria-GFP were obtained from Thermo Fisher (Eugene, OR). 4,6-diamidino-2-phenylindole (DAPI) were obtained from Amerso (Solon, USA). Solvents: Dimethyl sulfoxide (DMSO, HPLC) was purchased from Tianjin Guangfu Fine Chemical Research Institute (Tianjin, China); dimethylformamide (DMF) from Beijing Chemical Factory (Beijing, China). Unless otherwise stated, all reagents and solvents were used without further purification.

Instruments

The UV-Vis absorption spectra were measured using a 0.1 cm quartz cuvette on a Shimadzu UV-2550 PC double-beam spectrophotometer. The fluorescent emission spectra were measured using a 0.1 cm quartz cuvette on a Shimadzu RF-5301 PC spectrofluorophotometer with a xenon lamp as a light source. The fluorescence quantum yields $\left(\Phi_{\mathrm{f}}\right)$ and fluorescence lifetime (under the excitation at 400 nm) were measured on Edinburgh FLS 920 steady state spectrometer. The LC-HRMS (ESI) analysis was performed on an Agilent 1290-micro TOF-Q II mass spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE500 (500M) and Wuhan Zhongke Niujin As 400 (400 M) at room temperature and were reported in ppm and determined with tetramethylsilane (TMS) or respect to residual signals of the deuterated solvents as internal standards (TMS, $0.00 ; \mathrm{CDCl}_{3}, 7.26 ; \mathrm{DMSO}-d_{6}, 2.50$ for ${ }^{1} \mathrm{H}$ NMR and CDCl_{3}, 77.0; DMSO- $d_{6}, 39.5$ for ${ }^{13} \mathrm{C}$ NMR). Melting point was determined using a SGW X-4B microscopy melting point apparatus. Flow cytometry (cyto FLEX, Beckman COULTER). Confocal laser scanning microscope (Carl Zeiss Microscopy LLC, Jena, Germany).

Methods

Cytotoxicity assays. The viabilities of cells treated with $\mathbf{2 e}$ were measured by a wellestablished 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Generally, HeLa cells, A549 cells and SW480 cells were seeded in 96-well plates harboring 2 mL of 10% FBS-containing DMEM at a density of 8000 cells per well. The cells were incubated with drugs at concentrations from 0 to $100 \mu \mathrm{~g} / \mathrm{mL}$, and cells without treatment were used as a control. After the incubation at $37{ }^{\circ} \mathrm{C}$ for 20 h , the standard MTT assay was used to determine the cell viability. Five repeats were conducted for each sample.

Co-localization experiments of 2 e with commercial organelle-specific probes. HeLa cells were seeded into 6 -well plates at a density of 2.5×10^{5} cells/well and cultured with a sterilized coverslip for 12 h . Then the cells were treated with 2 e at the concentration of $1 \mu \mathrm{~g} / \mathrm{mL}$ for 4 h , respectively. Afterwards, the cells were stained with CellLight ${ }^{\mathrm{TM}}$ Mitochondria-GFP and Lyso Tracker Green DND-26 according to the manufacturer's protocol, respectively. Then the cells were washed with PBS for three times, followed by fixing with cold 75% ethanol at $4{ }^{\circ} \mathrm{C}$ for 20 min and then stained with DAPI solution. Finally, the cover slips were taken from the wells and observed with confocal laser scanning microscope (CLSM).

Visualizing extracellular fluctuations under oxidative stress and with drug treatment. Rosup, 5-fluorouracil (5-FU) and methotrexate (MTX) were used to construct oxidative and drug environments and then the endocytosis of $\mathbf{2} \mathbf{e}$ was detected under these conditions. HeLa cells were seed into 6 -well plates at a density of 2.5×10^{5} cells/well, and first, the cells were treated with Rosup, 5-FU and MTX, respectively. Then the medium was discarded after 1 hour treatment, and the cells were washed with phosphate buffer saline (PBS) three times. After that, 2e was incubated with cells at concentration of 1 $\mu \mathrm{g} / \mathrm{mL}$ for 4 h . The endocytosis efficiency of $\mathbf{2 e}$ was determined by flow cytometry and CLSM.

2. Synthesis of 2a-2f, I and 3

2.1 Synthesis of thermo-oxidation products oxazolidines (2a-2f)

General synthesis method 1 of $\mathbf{2 a - 2 f}$. Starting materials $\mathbf{1 a - O F - 1 f - O F}$ were prepared as reported. ${ }^{\text {S1 }} \mathbf{1 a - O F}$-1f-OF (100 mg) was stirred in dimethyl sulphoxide $(2 \mathrm{~mL})$ at $120{ }^{\circ} \mathrm{C}$ for $2 \sim 11 \mathrm{~h}$ (for $\mathbf{1 f - O F}, 10 \mathrm{mg} \mathrm{I}_{2}$ was added to prevent ring-closing of it). The reaction mixture was added with saturated solution of $\mathrm{NaCl}(20 \mathrm{~mL})$. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was added to extract product for 2 times and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with saturated solution of NaCl for 1 time. Then the solvent was dried with anhydrous sodium sulfate and removed under reduced pressure. The crude mixture was precipitated as black solid. Purification of the crude mixture by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50 / 1\right.$ to $\left.20 / 1\right)$ afforded the product 2a-2f. The products for characterizations below were obtained by method 1 .

General synthesis method 2 of $\mathbf{2 a - 2 f}$. Starting materials $\mathbf{1 a - 1 f}$ were prepared as reported. ${ }^{51}$ A mixture of $\mathbf{1 s}(0.37 \mathrm{mmol})$ and iodomethane (8 mmol) was stirred in dimethyl sulphoxide (2 mL) at $120^{\circ} \mathrm{C}$ for 11 h . The reaction mixture was precipitated by addition of saturated solution of $\mathrm{NaCl}(20 \mathrm{~mL})$ and filtered as brown powder. Purification of the crude reaction mixture by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50 / 1\right.$ to $\left.20 / 1\right)$ afforded the product $\mathbf{2 a - 2 f}$.

Yield: 31 \%. m.p. $239.5-240.5{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 8.03$ ($\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.65$ $(\mathrm{s}, 2 \mathrm{H}), 3.12$ ($\mathrm{s}, 6 \mathrm{H}$), 1.62 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 176.9,176.5$, $154.1,142.3,139.9,131.1,128.5,126.4,123.1,117.9,112.2,111.5,85.8,70.2,51.2$, 49.0, 24.7; LC-HRMS (ESI): m/z calculated for $[M+\mathrm{H}]^{+} 333.1961$, found 333.1967.

2b

Yield: 28 \%. m.p. $246.9-247.9{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~s}$, $6 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 178.3,178.0,154.9,147.4,145.2$, $140.9,132.1,125.3,118.9,117.4,112.4,111.8,86.9,70.6,50.9,49.3,39.77,24.8$; LC-
 HRMS (ESI): m/z calculated for $[M+\mathrm{H}]^{+}$378.1812, found 378.1815.

2c
Yield: 30 \%. m.p. $229.8-230.7{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 8.15(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H})$, $5.10(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ $178.9,176.0,164.0,142.1,140.4,131.1,128.6,127.3,124.7,123.2,114.6,113.1,88.0$, 70.7, 55.9, 51.9, 49.5, 24.0. LC-HRMS (ESI): m / z calculated for $[M+\mathrm{H}]^{+} 320.1645$, found 320.1644 .

Yield: 30%. m.p. $225.1-226.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 7.99(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H})$, $4.63(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 6 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): δ $175.9,175.4,158.8,153.9,141.9,135.8,130.8,118.1,113.5,113.3,111.5,109.5,85.7$,
70.0, 55.9, 51.3, 49.3, 24.6. LC-HRMS (ESI): m / z calculated for $[M+\mathrm{H}]^{+}$363.2067, found 363.2073 .

Yield: 29 \%. m.p. $214.3-215.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H})$, 1.17 (t, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 177.9,171.3,158.7,158.0$, $154.1,147.3,142.4,140.0,132.8,128.7,127.2,123.3,113.0,111.2,108.7,108.0,96.0$, 90.5, 70.1, 51.3, 49.7, 44.8, 24.7, 12.4. LC-HRMS (ESI): m/z calculated for $[M+\mathrm{H}]^{+}$ 429.2173, found 429.2174.

Yield: 16 \%. m.p. $174.5-175.2{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.45$ (dd, $J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=9.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{q}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.64(\mathrm{~s}$, $6 \mathrm{H}), 1.18(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 179.8,173.8,158.6$, $158.3,154.7,148.0,147.2,145.8,140.9,133.3,125.4,119.2,113.4,111.6,109.2,107.5$, 96.2, 91.1, 70.6, 51.2, 49.9, 44.9, 24.7, 12.5. LC-HRMS (ESI): m/z calculated for $[M+$ $H]^{+} 474.2023$, found 474.2015 .

2.2 Synthesis of I

A mixture of $\mathbf{1 b}(380 \mathrm{mg}, 1 \mathrm{mmol})$ and iodomethane $(1.2 \mathrm{~mL}, 19.2 \mathrm{mmol})$ was stirred in acetone (6 mL) at $56^{\circ} \mathrm{C}$ for 11 h . Light yellow solid was produced and precipitated as reaction proceeded. After removal of the solvent, the crude product was washed with acetone for 5 times to afford the product as a light yellow solid $\mathbf{I}(470 \mathrm{mg}$, Yield: 90.2 \%). m.p. $138.6-139.5{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.13$ (dd, $J=8.7,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06$ (d, $J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.93$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.84 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.89(\mathrm{~m}$, $4 \mathrm{H}), 3.60(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta 157.1$, $146.5,141.9,140.4,137.5,130.1,128.2,127.6,125.1,120.7,118.5,111.9,109.2,63.3$, 56.4, 48.9, 46.9, 30.7, 27.5, 20.1; LC-HRMS (ESI): m/z calculated for $[M+\mathrm{H}]^{+}$ 394.2125 , found 394.2125.

2.3 Synthesis of 3

A mixture of $\mathbf{1 b}(400 \mathrm{mg}, 1.05 \mathrm{mmol})$ and iodomethane $(0.62 \mathrm{~mL}, 10 \mathrm{mmol})$ was stirred in dimethylformamide (2 mL) at $110{ }^{\circ} \mathrm{C}$ for 36 h . Then the solvent was removed under reduced pressure and the crude mixture was precipitated as black solid. Purification of the crude mixture by chromatography (Petroleum ether $/ \mathrm{EtOAc}=6 / 1$) afforded the product as a yellow solid 3 (20 mg , Yield: 5.4%). m.p. $221.9-222.8^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 11.87(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 3.07$ $(\mathrm{s}, 6 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): δ 189.2, 170.6, 148.7, 142.7, 138.7, 129.7, 126.0, 118.6, 111.3, 109.0, 90.2, 46.9, 40.4, 28.0; LC-HRMS (ESI): m/z calculated for $[M+\mathrm{H}]^{+} 352.1656$, found 352.1659 .

3. ${ }^{1} \mathrm{H}$ NMR spectra monitoring heating $1 \mathrm{a}-1 \mathrm{f}$ in DMSO- \boldsymbol{d}_{6}

a)

Figure S1. (a) Reaction of $\mathbf{1 a - 1 f}$ in DMSO- d_{6}. (b) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a - 1 f}$ in DMSO- d_{6} $(5 \mathrm{mg} / 0.5 \mathrm{~mL})$ before and after heating for 3 h at $120^{\circ} \mathrm{C}$.

4. Structural characterizations of intermediate product I of $\mathbf{1 b}$ reacting with $\mathbf{C H}_{3} \mathbf{I}$

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra comparison between I (blue line) and intermediate products of $\mathbf{1 b}$ and $\mathrm{CH}_{3} \mathrm{I}$ reacting in DMF at 10 minutes (red line).

5. ${ }^{1} \mathrm{H}$ NMR spectra monitoring heating I in DMSO- d_{6}

c)

Figure S3. (a) Probable reaction process of I in DMSO- d_{6} at $120{ }^{\circ} \mathrm{C}$. (b) ${ }^{1} \mathrm{H}$ NMR spectra variation of \mathbf{I} in DMSO- $d_{6}(5 \mathrm{mg} / 0.5 \mathrm{~mL})$ in (b) low and (c) high magnetic fields at 120 ${ }^{\circ} \mathrm{C}$ with reaction time.

6. Photographs of heating $\mathrm{CH}_{3} \mathrm{I}$ in DMSO

Figure S4. Photographs of $\mathrm{CH}_{3} \mathrm{I}$ heated in DMSO over time in the dark at $120^{\circ} \mathrm{C}$.
The DMSO solution of $\mathrm{CH}_{3} \mathrm{I}$ gradually changed from colorless to brown with heating time, which indicated the generation of I_{2} from thermolysis of $\mathrm{CH}_{3} \mathrm{I}$.

7. HRMS and ${ }^{1} \mathrm{H}$ NMR spectra monitoring reaction of 1 g and $\mathrm{CH}_{3} \mathrm{I}$ in DMF at $120{ }^{\circ} \mathrm{C}$

a)

Figure S5. (a) Probable reaction process of $\mathbf{1 g}$ and $\mathrm{CH}_{3} \mathrm{I}$ in DMF at $120^{\circ} \mathrm{C}$. (b) HRMS spectra of $\mathbf{1 g}$ and $\mathrm{CH}_{3} \mathrm{I}$ in DMF at $120{ }^{\circ} \mathrm{C}$ for 40 min (above) and HRMS spectra of $\mathbf{1 g}$ Me (below).

b)

Figure S6. (a) Probable reaction process of $\mathbf{1 g}$ and $\mathrm{CH}_{3} \mathrm{I}$ in DMSO- d_{6} at $120^{\circ} \mathrm{C}$. (b) ${ }^{1} \mathrm{H}$ NMR spectra comparison of $\mathbf{1 g}$ (purple), $\mathbf{1 g}$ after heating 3 h (blue), $\mathbf{1 g}$ and $\mathrm{CH}_{3} \mathrm{I}$ after heating 3 h (green), $\mathbf{1 g - O F}$ (yellow) and $\mathbf{1 g - O F}$ after heating 3 h (dark red) ($5 \mathrm{mg} / 0.5$ mL in DMSO- d_{6}).

8. ${ }^{1} \mathrm{H}$ NMR spectra monitoring heating $1 \mathrm{~b}-\mathrm{OF}$ in DMSO- d_{6}

b)
c)

Figure S7. (a) Probable reaction process of 1b-OF in DMSO- d_{6} at $120^{\circ} \mathrm{C}$. (b) ${ }^{1} \mathrm{H}$ NMR spectra variation of $\mathbf{1 b}-\mathbf{O F}$ in DMSO- $d_{6}(5 \mathrm{mg} / 0.5 \mathrm{~mL})$ in (b) low and (c) high magnetic fields at $120^{\circ} \mathrm{C}$ with reaction time.
a)

b) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}-\mathrm{Br}$ reacting 3 h in DMSO- d_{6}

$[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}=458.1074$

Figure S8. (a) HRMS spectrum of $\mathbf{1 b} \mathbf{- B r}$ and (b) ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b} \mathbf{- O F}$ in DMSO- $d_{6}(5 \mathrm{mg} / 0.5 \mathrm{~mL})$ after reacting 3 h at $120^{\circ} \mathrm{C}$ and the speculated structure of $\mathbf{1 b}$ Br.

9. Comparison of $\mathbf{1 b}-\mathrm{OF}$ reaction in DMSO under aerobic and anaerobic conditions

Figure S9. The UV-Vis spectra of the diluted reaction solution of $\mathbf{1 b} \mathbf{b} \mathbf{O F}$ after heating for 4 hours in DMSO under aerobic (blcak line) and anaerobic (red line) conditions.

1b-OF could be oxidized to $\mathbf{2 b}$ both under aerobic and anaerobic condition, but it exhibits a slower reaction rate under anaerobic condition within the same reaction time of 4 h . It proved that except O_{2}, DMSO also works as oxidant in this reaction.

10. Reaction of 1a-OF with $\mathrm{H}_{2} \mathrm{O}_{2}$ in DMF

a)

Figure S10. (a) Reaction process of 1a-OF and $\mathrm{H}_{2} \mathrm{O}_{2}$ in DMF solution at $100{ }^{\circ} \mathrm{C}$. (b) HRMS spectra for reaction solutions of 1a-OF (1.0 eq) and $\mathrm{H}_{2} \mathrm{O}_{2}(2.4 \mathrm{eq})$ in DMF solution at $100^{\circ} \mathrm{C}$ for 5 h .

11. Reaction of 1b-OF in DMSO/DMF solutions with addition of radical inhibitor BHT

Figure S11. UV-Vis spectra for the diluted reaction solutions of 1b-OF with (blue line) and without (black line) addition of butylated hydroxytoluene (BHT) in (a) DMSO and (b) DMF solutions, respectively.

12. HRMS spectra for reaction solutions of 1 b with NIS, NBS and NCS

a)

b)

c)

d)

Figure S12. (a) Reaction process of $\mathbf{1 b}$ (1.0 eq) with N-iodosuccinimide (NIS), Nbromosuccinimide (NBS), and N-chlorosuccinimide (NCS) (1.2 eq) in DMF solution. (b) - (d) HRMS spectra for reaction solutions of $\mathbf{1 b}$ with NBS at $100^{\circ} \mathrm{C}$ for $6 \mathrm{~h}, \mathrm{NCS}$ at 100 ${ }^{\circ} \mathrm{C}$ for 6 h and NIS at $80^{\circ} \mathrm{C}$ for 80 min , respectively.

13. Crystal data and structure refinement for $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$ and 3

Single crystals of $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}$ and $\mathbf{3}$ were all obtained by vapor diffusion of n-hexane into their acetonitrile solutions of $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 c}$. Single crystal of $\mathbf{3}$ was obtained by slow evaporation in mixed solution of n-hexane and EtOAc.

2a

2c

2b

3

Figure S13. Single-crystal X-ray structures of 2a, 2b, 2c and 3 (50 \% probability ellipsoids). The anion in $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 c}$ is I^{-}.

Table S1. Summary of crystal data and intensity collection parameters for $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}$ and 3.

Compound	2b	2a	2 c	3
Formula	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{IN}_{3} \mathrm{O}_{3}$	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{IN}_{2} \mathrm{O}$	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NNO}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$
Formula mass	505.34	460.34	447.29	351.40
Space group	monoclinic	monoclinic	triclinic	monoclinic
	P 21/n	P 21/c	P-1	P 21/c
a/ \AA	6.4834 (13)	20.1317(10)	$9.4276(5)$	10.118(2)
b/ \AA	23.560 (5)	7.4780(4)	10.1879(5)	9.1993 (18)
c/ \AA	14.458(3)	13.4306(6)	$11.1539(6)$	20.098(4)
$\alpha{ }^{\circ}$	90	90	111.6410(10)	90
$\beta 1^{\circ}$	100.21(3)	94.394(2)	97.790(2)	100.49(3)
$\gamma 1^{\circ}$	90	90	99.874(2)	90
$\mathrm{V} / \AA 3$	2173.4(8)	2015.96(17)	957.65(9)	1839.4(7)
Z	4	4	2	4
$\rho / \mathrm{g} . \mathrm{cm}^{-3}$	1.544	1.517	1.551	1.269
μ / mm^{-1}	1.501	1.601	1.685	0.087
F000	1016	928	448	744.0
Temp, (K)	293(2) K	273(2) K	273(2) K	293 K
No. of reflns. collected	19917	12417	6501	17394
No. of unique reflns.	4975	3542	3553	4194
$\mathrm{R}_{\text {int }}$	0.0276	0.0437	0.0215	0.0325
Final $R 1$ values ($I>2$	$2 \sigma(I)) 0.0320$	0.0378	0.0318	0.0466
Final $w R\left(F^{2}\right)$ values ($I>$	> $2 \sigma(I)$)0.0724	0.0777	0.0732	0.1199
Final $R 1$ values (all d	data) 0.0405	0.0576	0.0398	0.0690
Final $w R\left(F^{2}\right)$ values (all	1 data) 0.0774	0.0869	0.0789	0.1289
Goodness of fit on F^{2}	${ }^{2} \quad 1.124$	1.023	1.015	1.057
CCDC numbers	1562292	1562290	1562291	1571735

14. Spectral data of $\mathbf{1 a - O F}-1 \mathrm{f}-\mathrm{OF}$ and $\mathbf{2 a - 2 f}$ in DCM solutions and PMMA films

14.1 Maximum absorption wavelength, maximum emission wavelength and molar absorption coefficient of $\mathbf{1 a}-\mathrm{OF}-1 \mathrm{f}-\mathrm{OF}$ and $\mathbf{2 a - 2 f}$.

Table S2. Spectral data including maximum absorption wavelength, maximum emission wavelength and molar absorption coefficient of 1a-OF to $\mathbf{1 f - O F}$ and $\mathbf{2 a}$ to $\mathbf{2 f}$ (a) in DCM solutions ($3.0 \times 10^{-5} \mathrm{M}$) and (b) in PMMA films (2 e is 0.6% and others are 1.0% weight percent).
a)

Solution (in DCM)	$\begin{aligned} & \lambda_{1, \text { abs }} \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \lambda_{1, \mathrm{em}} \\ & (\mathrm{~nm}) \end{aligned}$	$\stackrel{\varepsilon 1}{(\mathrm{~L} / \mathrm{mol} \cdot \mathrm{~cm})}$	Solution (in DCM)	$\begin{aligned} & \lambda_{2, \mathrm{abs}} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \lambda_{2, \mathrm{em}} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{gathered} \varepsilon 2 \\ (\mathrm{~L} / \mathrm{mol} \cdot \mathrm{~cm}) \end{gathered}$	$\begin{gathered} \Delta \lambda_{\mathrm{abs}}= \\ \lambda_{2, \mathrm{abs}}-\lambda_{1, \mathrm{abs}} \end{gathered}$	$\begin{gathered} \Delta \lambda_{\mathrm{em}}= \\ \lambda_{2, \mathrm{em}}-\lambda_{1, \mathrm{~m}} \end{gathered}$	$\Delta \varepsilon=\varepsilon 2-\varepsilon 1$ ($\mathrm{L} / \mathrm{mol} \cdot \mathrm{cm}$)
1a-OF	559	592	86530	2a	517	557	84190	-42	-35	-2340
1b-OF	593	624	137380	2b	535	578	90450	-58	-47	-46930
1c-OF	445	482	36760	2c	427	480	42420	-18	-2	5660
1d-OF	561	603	73550	2d	522	565	66130	-39	-38	-7420
1e-OF	622	666	87100	2e	572	609	105710	-50	-57	18610
1f-OF	666	701	104680	$2 f$	598	642	82670	-68	-59	-22010

b)

$\begin{gathered} \text { Film } \\ \text { (in PMMA) } \end{gathered}$	$\begin{aligned} & \lambda_{1, \text { abs }} \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \lambda_{1, \mathrm{em}} \\ & (\mathrm{~nm}) \end{aligned}$	$\underset{\text { (in PMMA) }}{\text { Film }}$	$\begin{aligned} & \lambda_{2, \text { abs }} \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \lambda_{2, \mathrm{em}} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{gathered} \Delta \lambda_{\mathrm{abs}}= \\ \lambda_{2, \mathrm{abs}}-\lambda_{1, \mathrm{abs}} \end{gathered}$	$\begin{gathered} \Delta \lambda_{\mathrm{em}}= \\ \lambda_{2, \mathrm{em}}-\lambda_{1, \mathrm{em}} \end{gathered}$
1a-OF	547	601	2a	495	563	-52	-38
1b-OF	586	631	2b	517	589	-69	-42
1c-OF	433	-	2c	415	503	-18	-
1d-OF	539	609	2d	493	573	-46	-36
1e-OF	603	677	2e	549	614	-54	-63
1f-OF	655	700	2 f	568	640	-87	-60

14.2 Measurement of molar absorption coefficient of 1a-OF-1f-OF and 2a-2f.

Figure S14. Plots of molar absorption coefficient for (a) 1a-OF-1f-OF and (b) 2a-2f in DCM.

14.3 Fluorescent lifetime measurements of 1a-OF-1f-OF and 2a-2f.

Table S3. Fluorescence lifetime of $\mathbf{1 a - O F}$ to $\mathbf{1 f - O F}$ in DCM solutions ($5.0 \times 10^{-5} \mathrm{M}$) and PMMA films (1.0% weight percent). ${ }^{\text {a }} \lambda_{\mathrm{ex}}=400 \mathrm{~nm} .{ }^{\text {b }} \lambda_{\mathrm{ex}}=375 \mathrm{~nm}$.

		$\tau_{1}(\mathrm{~ns})$	$\tau_{2}(\mathrm{~ns})$	$\tau_{\text {avg }}(\mathbf{n s})$	χ^{2}
1a-OF	solution ${ }^{\text {a }}$	0.34	2.54	0.58	1.363
	film ${ }^{\text {a) }}$	0.94	2.17	1.38	1.119
1b-OF	solution ${ }^{\text {a) }}$	0.61	3.25	1.36	1.653
	film ${ }^{\text {a }}$	0.72	2.59	1.03	1.402
1c-OF	solution ${ }^{\text {a) }}$	0.26	2.59	0.49	1.309
	film ${ }^{\text {a) }}$	0.71	2.25	1.60	1.253
1d-OF	solution ${ }^{\text {a) }}$	0.30	2.73	0.56	1.381
	film ${ }^{\text {a) }}$	0.70	1.84	1.10	1.253
1e-OF	solution ${ }^{\text {b }}$	1.84	-	1.84	1.643
	film ${ }^{\text {a) }}$	2.08	14.1	2.27	1.395
1f-OF	solution ${ }^{\text {b }}$	3.67	-	3.67	1.419
	film ${ }^{\text {a) }}$	2.29	15.73	2.56	1.182

Table S4. Fluorescence lifetime of $\mathbf{2 a}$ to $\mathbf{2 f}$ in DCM solutions $\left(5.0 \times 10^{-5} \mathrm{M}\right)$ and PMMA films (1.0% weight percent). ${ }^{\text {a) }} \lambda_{\text {ex }}=400 \mathrm{~nm} .{ }^{\text {b) }} \lambda_{\text {ex }}=375 \mathrm{~nm}$.

		$\tau_{1}(\mathrm{~ns})$	$\tau_{2}(\mathrm{~ns})$	$\tau_{\text {avg }}(\mathbf{n s})$	χ^{2}
2a	solution ${ }^{\text {b }}$	1.70	-	1.70	1.991
	film ${ }^{\text {a) }}$	1.99	4.23	2.71	1.378
2b	solution ${ }^{\text {b }}$	1.53	-	1.53	1.577
	film ${ }^{\text {a) }}$	1.14	2.53	1.74	1.360
2c	solution ${ }^{\text {b }}$	1.53	-	1.53	1.790
	film ${ }^{\text {a) }}$	0.97	2.22	1.62	1.147
2d	solution ${ }^{\text {b }}$	1.38	-	1.38	2.381
	film ${ }^{\text {a) }}$	1.82	3.59	2.31	1.108
2 e	solution ${ }^{\text {b }}$	3.27	-	3.27	1.722
	film ${ }^{\text {a) }}$	1.93	4.06	2.29	1.234
2 f	solution ${ }^{\text {b }}$	2.56	-	2.56	1.445
	film ${ }^{\text {a) }}$	1.08	2.22	1.81	1.704

15. Fluorescent photographs of solid powders of 1a-OF-1f-OF and 2a$2 f$

Figure S15. Fluorescent photographs of solid powder of 1a-OF-1f-OF (above) and 2a2f (below) under 365 nm handhold UV lamp, and the absolute fluorescence quantum yields of 2a, 2c, 2d and 2 e .

16. Solvent polarity effects on optical properties of $\mathbf{2 a - 2 f}$

Figure S16. Structures and photographs of $\mathbf{2 a - 2 f}$ in different solvents $\left(1.0 \times 10^{-5} \mathrm{M}\right)$ under visible and UV light by 365 nm handhold UV lamp.

Figure S17. UV-Vis spectra of $\mathbf{2 a - 2} \mathbf{f}$ in different solvents $\left(1.0 \times 10^{-5} \mathrm{M}\right)$.

Figure S18. Fluorescence emission spectra of $\mathbf{2 a - 2 f}$ in different solvents $\left(1.0 \times 10^{-5} \mathrm{M}\right)$.
17. Photographs, UV-Vis spectra and fluorescent spectra of $2 a-2 f$ in PMMA with different weight percent

Figure S19. Photographs of spin-coated 2a-2f PMMA films with weight percent of $0.2 \%, 0.6 \%, 1 \%, 1.5 \%, 5 \%$ and 10% respectively (a) under visible light and (b) 365 nm handhold UV lamp.

Figure S20. (a) - (f) UV-Vis spectra of spin-coated 2a-2f PMMA films with weight percent of $0.2 \%, 0.6 \%, 1 \%, 1.5 \%, 5 \%$ and 10% respectively.
$\mathbf{2 b}$ is not fully soluble when the weight percent reaches 10%, so the baseline increased.

Figure S21. (a) - (f) Fluorescence spectra of 2a-2f in PMMA films by spinning coating of different weight percent $(0.2 \%, 0.6 \%, 1 \%, 1.5 \%, 5 \%$ and $10 \%)$.

18. Comparison of fluorescence quantum efficiency of 2 a and 2 c with $\mathrm{I}^{-}, \mathrm{Br}^{-}$and PF_{6}^{-}

Synthesis of 2a and 2c with different anions (\mathbf{I}^{-}or $\mathbf{P F}_{\mathbf{6}}{ }^{-}$): 2a $\left(\mathrm{I}^{-}\right) / \mathbf{2 c}\left(\mathrm{I}^{-}\right)$were obtained by the reaction of $\mathbf{1 a} / \mathbf{1} \mathbf{c}$ with $\mathrm{CH}_{3} \mathrm{I}$ in DMSO at $120{ }^{\circ} \mathrm{C} . \mathbf{2 a}\left(\mathrm{PF}_{6}-\right) / \mathbf{2} \mathbf{c}\left(\mathrm{PF}_{6}{ }^{-}\right)$were obtained by counterion exchange with the bromide anions. The synthetic method is that we synthesized the crude product $\mathbf{2 a}\left(\mathrm{Br}^{-}\right)$and $\mathbf{2 c}\left(\mathrm{Br}^{-}\right)$in DMSO, respectively and added 15 equivalents of ammonium hexafluorophosphate into the DMSO solution. After stirring 20 minutes and adding saturated saline, the crude product 2a and 2c with hexafluorophosphate anion precipitated out. The product were purified by chromatography (dichloromethane $/$ methanol $=60 / 1$).

Structures confirmation of 2a ($\mathbf{P F}_{\mathbf{6}} \mathbf{6}^{-}$) and 2c ($\left.\mathbf{P F}_{\mathbf{6}}{ }^{\mathbf{-}}\right)$: The ${ }^{1} \mathrm{H}$ NMR spectra in Fig. S19 indicated that 2a $\left(\mathrm{PF}_{6}\right)$ and 2c $\left(\mathrm{PF}_{6}\right)$ may be obtained, but the anions can't be determined. Moreover, compared to $\mathbf{2 a}\left(\mathrm{Br}^{-}\right)$and $\mathbf{2 c}\left(\mathrm{Br}^{-}\right)$, the significantly reduced mobile phase polarity when doing chromatography, as well as $1 \sim 4 \mathrm{~nm}$ red shift of absorption spectra confirmed that we indeed obtained product 2a and 2c with $\mathrm{PF}_{6}{ }^{-}$and I^{-} (Fig. S20).
a)

2a

b)

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectra of 2a and 2c with hexafluorophosphate anion.

Figure S23. Normalized UV-Vis spectra of 2a and 2c with $\mathrm{I}^{-}, \mathrm{Br}^{-}$and PF_{6}^{-}in dichloromethane, respectively.

Figure S24. Comparison of photos and absolute fluorescence quantum yields of $\mathbf{2 a}$ and 2c with $\mathrm{I}^{-}, \mathrm{Br}^{-}$and PF_{6}^{-}in dichloromethane and in solid states, respectively.

19. Theoretical calculations of energy levels of frontier molecular orbitals for ground states of 2a-2f

All the Density functional theory (DFT) calculations were carried out using the GAUSSIAN 09 series of programs. ${ }^{\text {S2 }}$ DFT and B3LYP with a standard 6-31g (d) basis set were used for geometry optimizations of ground states of 2a-2f. And the vibrational spectrum of each molecule was calculated at the same level of theory to ensure that all of the structures correspond to the true minima of the potential energy surface.

	$\mathbf{2 a}$	$\mathbf{2 b}$	$\mathbf{2 c}$	$\mathbf{2 d}$	$\mathbf{2 e}$	$\mathbf{2 f}$
LUMO (eV)	-5.30	-5.68	-5.62	-5.16	-5.42	-5.74
HOMO (eV)	-8.17	-8.48	-8.83	-7.95	-8.03	-8.29
Band gap (eV)	2.87	2.80	3.21	2.79	2.61	2.55

Table S5. Calculated energy levels of frontier molecular orbitals for ground states of 2a-2f.

20. Photostability and thermal stability of 2a-2f

20.1 Measuring the photostability of 2a-2f in dichloromethane.

Figure S25. Measuring the photostability of 2a-2f. (a) ~ (g) UV-Vis absorption spectra of $\mathbf{2 a - 2 f}$ and the Rhodamine B (a commercial dye) in dichloromethane ($2.0 \times 10^{-5} \mathrm{M}$) with different UV irradiation time by 365 nm hand hold UV lamp (power: 12 W , distance: 5 cm). (h) Remaining percentage of the dyes $\mathbf{2 a - 2 f}$ and Rhodamine B after photodegradation.

20.2 Measuring the thermal stability for solids of 2a-2f.

Figure S26. Measuring thermal stability of 2a-2f's solids. (a) ~ (f) Thermo gravimetric analysis (TGA) of $\mathbf{2 a - 2 f}$.

For thermal stability, the starting decomposition temperatures for $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}, \mathbf{2 d}, \mathbf{2 e}$ and 2f were $206^{\circ} \mathrm{C}, 162{ }^{\circ} \mathrm{C}, 200^{\circ} \mathrm{C}, 206^{\circ} \mathrm{C}, 186^{\circ} \mathrm{C}$ and $157{ }^{\circ} \mathrm{C}$, respectively. It indicates that these heterocycles have moderate thermal stability to resist high temperature. The results suggest that in these molecules, the coumarin group of the molecule has a weak thermal stability than the phenyl groups of the molecules (i.e., $\mathbf{2 e}$ and $\mathbf{2 f} \mathbf{v s} . \mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 d}$), and the nitro group on the indole subunit will relatively decrease the thermal stability of molecules (i.e., 2b vs. 2a, 2f vs. 2e).
21. HRMS spectra of $\mathbf{2 b}-\mathbf{O H}$ and $U V-V i s$ spectra measurement for switch property of 2b

Figure S27. HRMS spectrum of $\mathbf{2 b - O H}$ from the reaction of $\mathbf{2 b}\left(4.0 \times 10^{-4} \mathbf{M}\right.$ in DMSO) and aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

Figure S28. UV-Vis spectra of 2b in DMSO $\left(4.0 \times 10^{-4} \mathrm{M}\right)$ after repeated addition of aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and HCl .

22. Measurement of the $\mathbf{p K a}{ }^{\prime}$ of $\mathbf{2 a - 2 f}$

The $\mathrm{pKa}^{\prime}(\mathrm{s})$ of these heterocycles were tested by measuring the UV-Vis spectra of these heteroclcles in buffers containing 1\% DMSO with pH between 6 and 13. Although 2a-2f are responsive to OH^{-}, they are not really weak acid and with no dissociation equilibrium. Considering that they could react with OH^{-}and are Lewis acid, therefore we use pKa '(s) to evaluate their acidity and the ability to react with base.

Figure S29. (a) ~ (f) UV-Vis absorption spectra of 2a-2f in buffers with pH between 6.35 and $12.96\left(\mathrm{C}=1.0 \times 10^{-5} \mathrm{M}\right)$ (above) and the intensity changes at its $\lambda_{\max }(\mathbf{2 a - 2 f})$ with pH of buffers (below).

23. HRMS spectra monitoring reaction of 2 b with amines

a)

b)

d) $\begin{gathered}\text { Intens } \\ \text { Diethylamine } \\ 200\end{gathered}$

Figure S30. 2b in MeCN reacting with multiple nucleophilic reagents. (a) Photos and structural illustration of $\mathbf{2 b}$ reacting with nucleophilic reagents. HRMS spectra of $\mathbf{2 b}$ reacting with (b) methylamine, (c) dimethylamine, (d) diethylamine and (e) pyrrolidine.

24. The selectivity to $\mathbf{p H}$ of $\mathbf{2 b}$ over reactive nitrogen and oxygen

 species

Figure S31. Effect of pH on the reaction of $\mathbf{2 b}$ with nucleophilic reagents and hydrogen peroxide. The maximum absorption variation at 520 nm of $\mathbf{2 b}$'s buffer solutions $(1.0 \times$ $10^{-5} \mathrm{M}$) of different pH values before (grey bar) and after (light yellow or light cyan bar) adding (a) dimethylamine $\left(1.45 \times 10^{-4} \mathrm{M}\right)$, (b) pyrrolidine $\left(1.81 \times 10^{-4} \mathrm{M}\right)$, (c) sodium methoxide $\left(2.44 \times 10^{-4} \mathrm{M}\right)$ and (d) hydrogen peroxide $\left(1.50 \times 10^{-4} \mathrm{M}\right)$.

25. The cytotoxicity of 2 e

Figure S32. Effects of 2e at varied concentrations on the viability of (a) SW480, (b) A549 and (c) HeLa cells.
26. Effect of extracellular fluctuations under oxidative stress and with drug treatment on endocytosis efficiency and fluorescence of 2e

Figure S33. Measurement for effect of extracellular fluctuations of oxidative stress (Rosup) and drug treatment (5-fluorouracil (5-FU) and methotrexate (MTX)) on endocytosis efficiency of $\mathbf{2 e}$ in HeLa cells by (a) flow cytometry and (b) CLSM.

27. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S35. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S37. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 b}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

DMSO

Figure S39. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 c}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 d}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S41. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 d}\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure $\mathbf{S 4 2} .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 e}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure $\mathbf{S 4 3} .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 e}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S44. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 f}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S45. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 f}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S46. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{I}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S47. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{I}\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

Figure S48. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S49. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

28. The coordination of structures

2a

C
C
H
C
H
C
H
C
H
C
C
C
H
H
H
C
H
H
H
C
C
H
C
C
H
H
C
H
H
C
C
H
3. 96644271
-0. 84461912
0. 02769471
5. 22420769
-1.43131355
0. 00684497
5. 35183437
-2. 48964129
0. 21668254
6. 33617190
-0. 63301272
-0. 29176304
7. 32624972
-1. 07735822
-0.31150529
6. 18311135
0.72762128
-0.57006790
7. 05397665

1. 33042151
-0. 80785382
2. 92041045
3. 33117088
-0.55433545
4. 81360075
5. 38537008
-0.78786729
6. 83604206
0.51852484
-0.24371694
7. 59547058
-1.43342156
8. 30314615
9. 49183760
-1.99825062
10. 74029233
2.74996617 $-1.24178293 \quad$ 2. 48757711
3.18424190 $-2.83829710 \quad 1.85430058$
1.48096806 $-2.36309372 \quad 1.94927842$
2.22886357 $-2.52178367-0.73389371$
1.22514359 $-2.92015410 \quad-0.55265215$
11. $93733390-3.35228136-0.65677430$
12. $27071316-2.13227941-1.75542108$
13. 69466020
-0.19821514
0.14509035
14. 30806565
-0.26717361
15. 28943225
-0.05938517
-1. 26448837
16. 49180783
-0.69169836
17. 70908749
18. 16242701
19. 80440199
20. 54729053
21. 59693041
0.99915686
22. 18089257
23. 61088621
24. 65213571
25. 62720769
0.63118663
26. 97182127
27. 23157856
-0.33192523
28. 67470107
29. $39871244-1.37393758$
30. 79510384
31. 91309819
-0. 10200920
-2.09395956
32. 39723140
0.07051516
-2.56449119
-0.90407767
-0.23869201
-1.86053463
-1.70090971
-0.45481533

C	-3.90788790	-1.18920841	-0.32223528
H	-4.21073521	-2.19607004	-0.57933235
C	-4.89076269	-0.17892338	-0.10076368
C	-4.41907220	1.13382963	0.19475224
H	-5.12220030	1.93730658	0.37309776
C	-3.07212513	1.40479206	0.27125628
H	-2.75168075	2.41251892	0.50841069
C	-6.68015208	-1.81435936	-0.45670953
H	-6.36468762	-2.14597288	-1.45379285
H	-7.76885220	-1.83578907	-0.42040986
H	-6.30137235	-2.52538842	0.28674193
C	-7.20879735	0.60305846	0.02116927
H	-7.13958478	1.03525769	1.02676579
H	-8.20711648	0.18409749	-0.10039443
H	-7.08328407	1.40514325	-0.71576847
N	2.45970259	0.87097791	-0.15145533
N	-6.21931358	-0.45621467	-0.17274338
0	-0.44047234	2.02889745	0.12406241

2b

C
3. 11371700
-0. 52006735
0. 10757308
4. 39541715
-1. 04143745
0. 09912222
4. 61269239
-2. 08134806
0. 31316309
5. 44505016
-0. 16798875
-0. 20243758
5. 24412747

1. 17974380
-0.49456742
2. 09939217
3. 80157205
-0.72855490
4. 95042553
5. 70456478
-0. 48710651
6. 78923552
7. 74923094
-0. 72935551
8. 90870206
9. 83488694
-0.17456393
10. 81173241
-0.00063216
11. 20956723
12. 77777818
-1. 18362323
13. 38206610
14. 48003111
-2. 29918248
-0.64848984
$\begin{array}{lll}1.50330161 & -1.91640721 & -1.67323778\end{array}$
$\begin{array}{lll}0.49956020 & -2.75115386 & -0.46679869\end{array}$
15. 23344910
-3.08814958
-0.56144490

C	1.70242328	-1.74309022	1.82343857
H	2.43977813	-2.54275389	1.94586669
H	0.71244077	-2.16226609	2.03009837
H	1.91376538	-0.96838604	2.56680932
C	-0.56476400	-0.14297209	0.34200042
H	-0.87871167	-1.15708964	0.55075831
C	-1.62041883	0.77839250	0.19658924
C	-0.22856481	2.69824241	0.63523271
H	-0.01953553	2.34984444	1.65262323
H	-0.44151549	3.76798799	0.66151391
C	0.95783778	2.44213436	-0.28773768
H	0.65382028	2.57965386	-1.33210901
H	1.73844084	3.17379924	-0.06331065
C	-2.99645317	0.38671936	0.08313404
C	-4.03475409	1.34346005	0.24010563
H	-3.77615547	2.37167958	0.46429932
C	-5.36099279	0.99727375	0.13737869
H	-6.11127157	1.76366357	0.28321254
C	-5.75303402	-0.34621459	-0.14332152
C	-4.71019583	-1.30635973	-0.31820635
H	-4.95137350	-2.33345894	-0.55989003
C	-3.38818549	-0.94639867	-0.20855083
H	-2.63749024	-1.70831261	-0.38995356
C	-8.11204116	0.31053866	-0.09652525
H	-8.09492746	0.76110577	0.90303611
H	-9.08166126	-0.16517333	-0.23888062
H	-8.00835216	1.10549712	-0.84412454
C	-7.43976396	-2.08391174	-0.51114302
H	-7.07430759	-2.41770960	-1.48993131
H	-8.52635890	-2.16194987	-0.50907060
H	-7.04865043	-2.75685463	0.26053543
N	6.82059022	-0.69935721	-0.21699182
N	1.52270553	1.11278954	-0.09091593
N	-7.05976521	-0.69618148	-0.24416695
0	-1.72672117	-1.89228472	0.04277273
0	0.08425271	-0.48658586	
0	-14052602	2.10825126	0.15855322

2c

C	-3.67922024	-0.77148786	0.03262510
C	-4.96159897	-1.30308027	0.02023044
H	-5.13242352	-2.35878543	0.21089876
C	-6.04115643	-0.45061069	-0.24474613
H	-7.04996448	-0.85082215	-0.25747409
C	-5.83381060	0.90807319	-0.49867841
H	-6.68142968	1.55216233	-0.71034463
C	-4.54640432	1.45629181	-0.49138922
H	-4.39746998	2.50940700	-0.70566562
C	-3.49525474	0.58996539	-0.21424623
C	-1.38313992	-0.22442771	0.12718142
C	-2.33084255	-1.42297785	0.27373975
C	-2.02412884	-2.50297187	-0.79221674
H	-2.76584384	-3.30416382	-0.72045004
H	-1.03598687	-2.94694899	-0.63409795
H	-2.06506681	-2.09078236	-1.80479765
C	-2.22639014	-2.02210094	1.69759631
H	-2.44222743	-1.27272118	2.46510828
H	-1.22825761	-2.43238376	1.88142470
H	-2.95037402	-2.83588847	1.80429783
C	-1.55150434	2.21798027	-0.30938660
H	-2.34337946	2.93455969	-0.07755543
H	-1.24625432	2.37474989	-1.35028135
C	-0.37242221	2.47503509	0.62391464
H	-0.17451196	3.54679158	0.67096907
H	-0.58196914	2.10395446	1.63311159
C	1.03768706	0.58339742	0.13904621
C	0.00722383	-0.35339088	0.24634674
H	0.33778430	-1.37099283	0.40701699
C	2.43467332	0.20913583	0.02104116
C	2.82971270	-1.08597360	-0.39851852
H	2.08400935	-1.82179897	-0.68001180
C	4.16137129	-1.42290254	-0.50423322
H	4.47001946	-2.40790665	-0.83740110
C	5.16215478	-0.47554017	-0.19609758
	-293		

C

4.79025906	0.81940063	0.21201712
5.54018131	1.56213705	0.45555487
3.44774892	1.14883202	0.31111462
3.17144235	2.14576666	0.63405364
7.50874766	-0.01017972	-0.05433174
7.48001397	0.85645969	-0.72383656
8.41435266	-0.58712556	-0.23941067
7.48913487	0.32013979	0.99001855
-2.10107907	0.87883481	-0.13815855
0.85208639	1.91056355	0.14720237
6.42460641	-0.90462066	-0.32846140

2d

C
C
H
C
C
H
C
H
C
C
C
H
H
H
C
H
H
H
C
C
H
C
C
3. 31016555
-0. 67652687
0. 11773626
4. 57302173
-1. 23327197
0. 12677856
4. 74863980
-2. 28175517
0. 34608019
5. 68350659
-0. 41098221
-0.16016731
5. 49842134
0. 94885825
-0.45691137
6. 34576075
1.58258382 -0.68758828
4. $21544617 \quad 1.50933887-0.46720309$
4. 09321584
2. 55900835
-0.71402023
3. 14270347
0. $68214558-0.16922075$

1. 95079954
-1.30163401
2. 37526670
1.83993522 $-1.85741033 \quad 1.81482582$
3. $06358680-1.08754121 \quad 2.55955068$
4. $55467499 \quad-2.67573690 \quad 1.94730456$
$\begin{array}{lll}0.83660258 & -2.24938201 & 2.01045607\end{array}$
1.63335631 $-2.40736826 \quad-0.65900931$
$\begin{array}{llll}0.63836096 & -2.83258872 & -0.49155188\end{array}$
5. $36429894-3.21624165 \quad-0.56391022$
$\begin{array}{llll}1.68121873 & -2.02393028 & -1.68258772\end{array}$
$\begin{array}{lll}1.01770361 & -0.09320818 & 0.19115769\end{array}$
$\begin{array}{lll}-0.37091244 & -0.20105500 & 0.31496020 \\ -0.71183408 & -1.20726675 & 0.52019099\end{array}$
-1.39454624
6. 74276010
7. 16484668
8. 62883042
9. 59871519

H	0.22851738	2.27972000	1.61996346
H	-0.14285989	3.70451650	0.61806066
C	1.23165905	2.33650508	-0.30680488
H	0.94761028	2.48321137	-1.35543997
H	2.03181132	3.04334669	-0.07095273
C	-2.78828554	0.39069316	0.06066682
C	-3.21839317	-0.92382205	-0.24782648
H	-2.48969888	-1.70070792	-0.45470667
C	-4.55287061	-1.24785007	-0.34265925
H	-4.82401245	-2.26400391	-0.59884677
C	-5.56589789	-0.26568451	-0.13486973
C	-5.13457121	1.06028032	0.15996163
H	-5.86156171	1.84441960	0.32849824
C	-3.79601684	1.37003798	0.24822551
H	-3.50691719	2.38748819	0.48434269
C	-7.30470014	-1.95233469	-0.50282308
H	-6.96838006	-2.27939797	-1.49473458
H	-8.39276620	-2.00503637	-0.47901829
H	-6.91461698	-2.64981701	0.24777121
C	-7.90660868	0.45066885	-0.04103778
H	-7.86103620	0.88911416	0.96337013
H	-8.89164731	0.00375887	-0.17184028
H	-7.79553607	1.25351127	-0.77968956
N	1.75526979	0.99266401	-0.10369135
N	-6.88637209	-0.58098958	-0.21947826
O	-1.18123568	2.07035403	0.1180860
O	6.88370085	-1.03485598	-0.12691664
C	8.06280534	-0.28169740	-0.40273380
H	8.88978968	-0.98592442	-0.30940246
H	8.04428663	0.12703993	-1.42031662
H	8.19236365	0.53226785	0.32082361

2 e

5.74676316 $-0.76340985-0.04014029$

C

H

7.18327085	-2.36565030	0.12833452
8.09583648	-0.49416242	-0.45490936
7.89560634	0.85595237	-0.75544835
8.74036167	1.47621102	-1.03824428
6.61850600	1.42557181	-0.70404211
6.47347858	2.47141656	-0.95405072
5.57001828	0.59020149	-0.33522597
3.46853273	-0.17267493	0.15840484
4.40314348	-1.38103160	0.29530993
4.01358123	-2.48435890	-0.72058895
4.02998644	-2.10536399	-1.74691290
3.01496116	-2.87938627	-0.51051279
4.72913173	-3.30948172	-0.65048449
4.36284520	-1.93950490	1.73823314
5.07717116	-2.76374463	1.83022252
3.36795861	-2.32526234	1.98094940
4.63079665	-1.17386299	2.47286552
2.08858370	-0.28920179	0.35788366
1.74389137	-1.29510907	0.55129872
1.05683033	0.64045594	0.24028684
2.48962970	2.55317817	0.52769326
2.71918758	2.24029989	1.55236192
2.29896403	3.62766919	0.51830668
3.65229312	2.24445814	-0.40902891
3.33494448	2.36580489	-1.45123213
4.45545790	2.96042891	-0.21427960
4.18868150	0.90718476	-0.19585607
1.25568739	1.96930610	0.10814378
-0.34683062	0.29145211	0.23566482
-1.31600576	1.29359970	0.21425082
-0.78301827	-1.11484696	0.22851856
-2.68535507	1.01119376	0.17190476
-0.99574852	2.33000621	0.22918362
-3.09090690	-0.34828076	0.15122077
-3.71695887	1.98719670	0.13704236
-4.41283580	-0.73269593	0.10279924
-5.03910567	1.63206539	0.08964396
-3.44313315	3.03874135	0.14266626
-5.44272390	0.24931844	0.08352780
-4.62289752	-1.79222307	0.07464597
-5.78266789	2.41535479	0.05270849
-0.08910152	-2.10738192	0.26491427
-2.15397252	-1.33609520	0.17689148
-6.75946628	-0.09499363	0.06448241
-7.78425131	0.97201826	-0.03682638

H	-7.60012631	1.69091608	0.76912254
H	-7.64284536	1.50811445	-0.98518379
C	-7.16128808	-1.50742799	-0.03382947
H	-6.51920341	-2.09548580	0.62702325
H	-8.16515362	-1.59755426	0.37883048
H	9.09647939	-0.91197115	-0.50337011
C	-7.13046827	-2.06042193	-1.46331059
H	-6.12961756	-1.99388811	-1.90133270
H	-7.43286613	-3.11311966	-1.46119243
H	-7.82005930	-1.51162759	-2.11317721
C	-9.23679936	0.51397583	0.06418139
H	-9.45858310	0.04322104	1.02689017
H	-9.87127240	1.40211905	-0.01914733
H	-9.52460415	-0.16906993	-0.74029248

$2 f$

C
C
H
C
C
H
C
H
C
C
C
C
H
H
H
C
H
H
H
C
-7. 60012631
-7. 64284536
-7. 16128808
-6. 51920341
-2.09548580
0.62702325
8. 16515362
. 09647939
-7. 13046827
-2. 06042193
-1. 46331059
$-6.12961756-1.99388811 \quad-1.90133270$
$-7.43286613-3.11311966-1.46119243$
$-7.82005930-1.51162759 \quad-2.11317721$
-9.23679936 0.51397583
0. 06418139
$-9.87127240 \quad 1.40211905 \quad-0.01914733$
$-9.52460415-0.16906993-0.74029248$
4. $87495500-0.48698432 \quad 0.11121404$
6. $16228806-0.99511698$
0. 09972223
6. 39475531
-2.02115185
0. 35941511
7. 19525920
-0. 12714873
-0.26758660
6. 97432717

1. 20270880
-0. 62174367
2. 81807145
3. 81989741
-0.90432380
4. 67576467
1.71464180 -0.61161097
5. 49787348
6. 74470555
-0. 90027455
7. 65100879
8. 85087500
-0.23336455
9. 57428867
0.01862208
10. 24609978
11. 55147162
-1. 14745011
12. 44305708
3.22865843 $-2.30015450-0.54115836$
$3.25033450-1.95690057-1.57987593$
13. $24194970-2.72580859-0.33555789$
$\begin{array}{lll}3.97373539 & -3.09370162 & -0.42788216\end{array}$
14. $50798498 \quad-1.65749231 \quad 1.90397709$
15. $25377312-2.44726259 \quad 2.03774975$
16. $52521282-2.07646991$
17. 14019360
3.72787465 $-0.85667223 \quad 2.61667360$
1.20148745 -0.14328545
18. 41816698

H	0. 89051434	-1.15467677	0. 63848379
C	0. 13251239	0. 74279383	0. 24255965
C	1. 48707327	2. 71687906	0. 50682390
H	1. 70801352	2. 44333745	1. 54442397
H	1. 25462637	3. 78207183	0. 46157828
C	2. 67743807	2. 42627842	-0.40042958
H	2. 37280327	2. 49829099	-1. 45102014
H	3. 44582060	3. 18240030	-0.21776999
N	8. 57643531	-0.64415639	-0.28569815
N	3. 26381937	1. 11951756	-0.13102921
0	8. 74004702	-1. 82029977	0.03158405
0	9. 46754191	0. 13415690	-0.61520199
0	0. 28441692	2. 07292449	0.08140866
C	-1.24915882	0. 33446073	0. 20413803
C	-2. 26172970	1. 29546835	0. 12701476
C	-1. 62546763	-1. 08905921	0. 21961979
C	-3.61202284	0. 95389616	0. 04829102
H	-1.98591175	2. 34464322	0. 12633438
C	-3.96017394	-0. 42403074	0.05143416
C	-4. 68322420	1. 88720756	-0.03778415
C	-5. 26217654	-0. 86372694	-0.02923663
C	-5. 98504279	1. 47658079	-0.11967725
H	-4. 45291078	2. 94902950	-0. 03219829
C	-6. 32741078	0. 07625877	-0.12000671
H	-5. 43420261	-1. 93079339	-0.04255316
H	-6. 76503910	2. 22438436	-0.16235238
0	-0. 89343833	-2. 05022876	0. 30191973
0	-2.98476364	-1. 36917865	0. 13202666
N	-7. 61860735	-0. 32786079	-0. 20011394
C	-8. 73301627	0. 61401163	-0.40412527
H	-9. 50845287	0. 06783163	-0.94967967
H	-8. 40831824	1. 41795290	-1. 06941461
C	-8. 00240553	-1. 74601848	-0.09259240
H	-7. 35419076	-2. 23681517	0.63805825
H	-9. 00966849	-1. 76750816	0. 33418327
C	-9. 30511101	1. 17236241	0. 90239879
H	-8.55439180	1. 74306151	1. 45813808
H	-10.14982395	1. 83482589	0. 68618087
H	-9.66541997	0. 36737674	1. 55149719
C	-7.98376283	-2. 48467117	-1.43456008
H	-6.98135628	-2. 49599115	-1.87372721
H	-8. 30759327	-3. 52106248	-1. 29297055
H	-8. 66293055	-2. 01392978	-2.15316402

29. References

S1 Q. Chen, L. Sheng, J. Du, G. Xi, S. X.-A. Zhang, Chem. Commun. 2018, 54, 50945097.

S2 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013

