Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI)

Regulation of aggregation-induced emission behaviours and

mechanofluorochromism of tetraphenylethene through different oxidation

states of sulphur moieties

Qin Yang,^a Dongyang Li, ^b Weijie Chi,^c Ronghui Guo,^a Bin Yan,^a Jianwu Lan,^{*a} Xiaogang Liu^{*c} and Jun Yin^{*b,d}

^aCollege of Light Industry and Textile and Food Engineering, Sichuan University, Chengdu, Sichuan, 610005, China

^bKey Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

^cSingapore University of Technology and Design, 8 Somapah Road, Singapore 487372. E-mail: xiaogang_liu@sutd.edu.sg

^dState Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, PR China, 518055

Contents:

Fig. S1. The UV-Vis absorption spectra 1 (A), 2 (B), and 3 (C) (10 μ M) in CH₃CN-H₂O mixtures with different volume fractions of water (f_W).

Fig. S2. Optimized molecular structures and frontier molecular orbitals, as well as their photoexcitation data (*f*: oscillator strength; *E*: excitatio energy from the S₀ to the S₁ state; λ_{abs} : calculated peak UV-vis absorption wavlengths) of **1**—**3** in water.

Fig. S3. Optimized dimer structures of 1 and one selected dihedral angel of a phenyl ring both in the ground (S_0) and the first excited singlet states (S_1) in water.

Fig. S4. The Normalized fluorescence emission spectra ($\lambda_{ex} = 340 \text{ nm}$) of 1, 2 and 3 in the amorphous phase.

Fig. S5. The intermolecular interactions in the crystals of 1 (A), 3W (B), and 3G (C).

Fig. S6. The XRD patterns (A) and PL spectra (B) of 2.

Fig. S7. The PL spectra of **3G** before and after grinding. Excitation wavelength: 340 nm.

Fig. S8. DSC curves of 3G and 3W.

Fig. S9. Molecular structures of **3W** and **3G** as extracted from crystal structures, their frontier molecular orbitals, and photoexcitation data in water (*f*: oscillator strength; *E*: excitatio energy from the S₀ to the S₁ state; λ_{abs} : calculated peak UV-vis absorption wavlengths).

Fig S10. ¹H NMR of 1 in CDCl₃.

Fig S11. ¹³C NMR of 1 in CDCl₃.

Fig S12. ¹H NMR of 2 in CDCl₃.

Fig S13. ¹³C NMR of **2** in CDCl₃.

Fig S14. ¹H NMR of 3 in CDCl₃.

Fig S15. ¹³C NMR of 3 in CDCl₃.

 Table S1. Crystal data and structure refinement for 1.

Table S2. Crystal data and structure refinement for 3G and 3W.

Table S3. The selected torsion angles (°) among benzene rings and the plane of the ethylene within crystals of **3G** and **3W**.

Fig. S1. The UV-Vis absorption spectra 1 (A), 2 (B), and 3 (C) (10 μ M) in CH₃CN-H₂O mixtures with different volume fractions of water (f_W).

Fig. S2. Optimized molecular structures and frontier molecular orbitals, as well as their photoexcitation data (*f*: oscillator strength; *E*: excitatio energy from the S₀ to the S₁ state; λ_{abs} : calculated peak UV-vis absorption wavlengths) of 1—3 in water.

Fig. S3. Optimized dimer structures of 1 and one selected dihedral angel of a phenyl ring both in the ground (S_0) and the first excited singlet states (S_1) in water.

Fig. S4. The Normalized fluorescence emission spectra ($\lambda_{ex} = 340$ nm) of 1, 2 and 3 in the amorphous phase.

Fig. S5. The intermolecular interactions in the crystals of 1 (A), 3W (B), and 3G (C).

Fig. S6. The XRD patterns (A) and PL spectra (B) of 2. Excitation wavelength: 340 nm.

Fig. S7. The PL spectra of 3G before and after grinding. Excitation wavelength: 340 nm.

Fig. S8. DSC curves of 3G and 3W.

Fig. S9. Molecular structures of **3W** and **3G** as extracted from crystal structures, their frontier molecular orbitals, and photoexcitation data in water (*f*: oscillator strength; *E*: excitatio energy from the S₀ to the S₁ state; λ_{abs} : calculated peak UV-vis absorption wavlengths).

Fig S10. ¹H NMR of 1 in CDCl₃.

Fig S11. ¹³C NMR of 1 in CDCl₃.

Fig S12. ¹H NMR of 2 in CDCl₃.

Fig S13. ¹³C NMR of 2 in CDCl₃.

Fig S14. ¹H NMR of 3 in CDCl₃.

Fig S15. ¹³C NMR of 3 in CDCl₃.

Identification code	1
Empirical formula	$C_{32}H_{24}S$
Formula weight	440.57
Temperature/K	293.15
Crystal system	orthorhombic
Space group	Pbca
a/Å	14.9419(11)
b/Å	17.6599(17)
c/Å	18.1494(18)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	4789.1(7)
Z	8
$\rho_{calc}g/cm^3$	1.222
µ/mm ⁻¹	0.153
F(000)	1856.0
Crystal size/mm ³	0.3 imes 0.3 imes 0.25
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.332 to 52.738
Index ranges	$-18 \le h \le 18, -13 \le k \le 22, -22 \le l \le 20$

Table S1. Crystal data and structure refinement for 1.

Reflections collected	13409
Independent reflections	$4881 [R_{int} = 0.0618, R_{sigma} = 0.0909]$
Data/restraints/parameters	4881/0/298
Goodness-of-fit on F ²	0.955
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0776, wR_2 = 0.1897$
Final R indexes [all data]	$R_1 = 0.1545, wR_2 = 0.2356$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.31

 Table S2. Crystal data and structure refinement for 3G and 3W.

Identification code	3G	3W
Empirical formula	$C_{32}H_{24}O_2S$	$C_{32}H_{24}O_2S$
Formula weight	472.57	472.57
Temperature/K	293.15	293.15
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/n$	$P2_1/c$
a/Å	12.8357(4)	13.7068(13)
b/Å	8.1876(3)	16.8217(15)
c/Å	24.0614(9)	11.5705(11)
α/\circ	90	90
β/°	94.159(3)	105.319(10)
$\gamma/^{\circ}$	90	90
Volume/Å ³	2522.03(16)	2573.0(4)
Ζ	4	4
$\rho_{calc}g/cm^3$	1.245	1.220
μ/mm^{-1}	0.155	0.152
F(000)	992.0	992.0
Crystal size/mm ³	0.35 imes 0.3 imes 0.25	0.3 imes 0.2 imes 0.2
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2\Overlap range for data collection/°	5.906 to 52.744	5.886 to 52.744
Index ranges	$-15 \leq h \leq 16, -10 \leq k \leq 9, 30 \leq l \leq 26$	-15 \leq h \leq 17, -20 \leq k \leq 20, - 14 \leq l \leq 14
Reflections collected	13857	7293
Independent reflections	5141 [$R_{int} = 0.0233$, $R_{sigma} = 0.0338$]	$= 7293 [R_{int} = ?, R_{sigma} = 0.0550]$
Data/restraints/parameters	5141/0/316	7293/0/317
Goodness-of-fit on F ²	1.022	0.915
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0465, wR_2 = 0.1033$	$R_1 = 0.0432, wR_2 = 0.0891$
Final R indexes [all data]	$R_1 = 0.0685, wR_2 = 0.1140$	$R_1 = 0.0780, wR_2 = 0.0972$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.30	0.21/-0.28

 Table S3. The selected torsion angles (°) among benzene rings and the plane of the ethylene within crystals of 3G and 3W.

Crystal	C7C8C15C16	C7C8C21C26	C8C7C9C10	C2C1C7C9	average
3 G	38.3	56.9	53.4	36.4	46.2
3W	-59.2	138.3	124.0	-54.7	52.9