Electronic Supplementary Information (ESI)

Triazatruxene-based thermally activated delayed fluorescence small molecules with aggregation-induced emission property for solution-processable nondoped OLEDs with low efficiency roll-off

Yang Liu,^{ab} Xiaofu Wu,^a Yonghong Chen,^{ac} Liang Chen,^{ab} Hua Li,^{ab} Weijie Wang,^{ab} Shumeng Wang,^a Hongkun Tian,^{ab} Hui Tong^{*ab} and Lixiang Wang^{*ab}

^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

E-mail: chemtonghui@ciac.ac.cn, lixiang@ciac.ac.cn.

^b University of Science and Technology of China, Hefei 230026, P. R. China.

^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

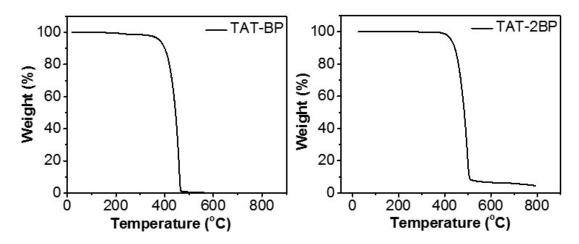


Fig. S1 TGA curves of TAT-BP and TAT-2BP.

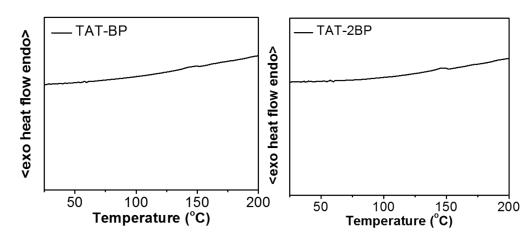
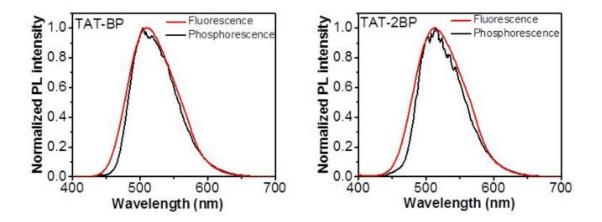



Fig. S2 DSC curves of TAT-BP and TAT-2BP.

Fig. S3 Fluorescence spectra (red line) at room temperature and phosphorescence at (black line) spectra at 77K of TAT-BP and TAT-2BP in neat films.

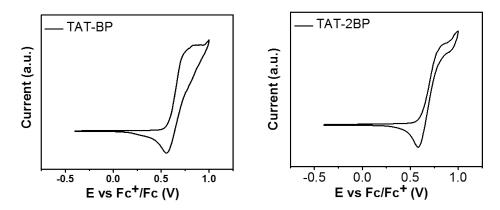
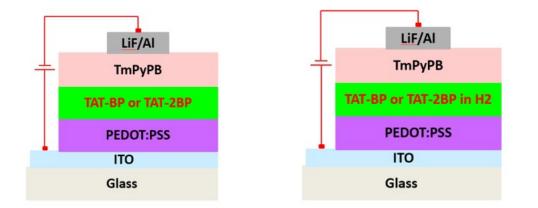
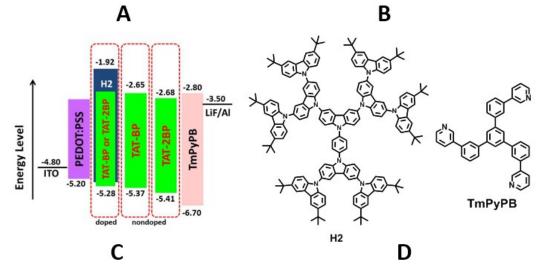




Fig. S4 Cyclic voltammetry analysis of TAT-BP and TAT-2BP.

Emitters	HOMO (eV)	LUMO (eV)	E _g (eV)	S ₁ (eV)	T ₁ (eV)	∆E _{s⊤} (eV)	f
TAT-BP	-4.91	-1.82	3.09	2.68	2.59	0.09	0.0217
TAT-2BP	-5.03	-1.87	3.16	2.73	2.61	0.12	0.0346

 Table S1 DFT calculation results of TAT-BP and TAT-2BP.

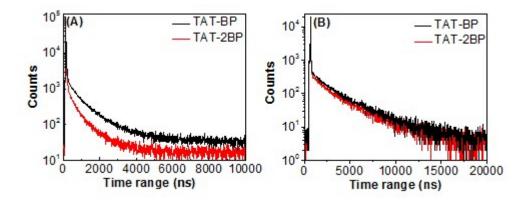

Fig. S5 (A) Nondoped device configuration. (B) Doped device configuration with 30 wt% emitters doped in H2 host. (C) Energy level diagrams the multilayer OLEDs. (D) Chemical structure of H2 and TmPyPB.

Fig. S6 EL performance of the OLEDs based on TAT-BP and TAT-2BP doped in H2 host.

(A) The current density-voltage-luminance characteristics. (B) External quantum efficiency-luminance characteristics. (C) Current efficiency-luminance and power efficiency-luminance characteristics. (D) Electroluminescence spectra (EL) at 1000 cd m^{-2}

	Maximum values			Values at 1000 cd m ⁻²				
Device	V _{on} (V)	LE(cd/A)	PE(lm/W)	EQE(%)	LE(cd/A)	PE(lm/W)	EQE(%)	Roll-off ratio (%)
TAT-BP(30 wt %):H2	2.9	37.1	38.2	12.1	26.8	19.7	8.8	27.3
TAT-2BP(30 wt %):H2	2.9	40.4	34.8	13.2	40.0	30.6	12.9	2.3

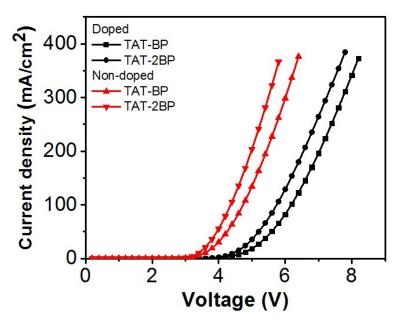
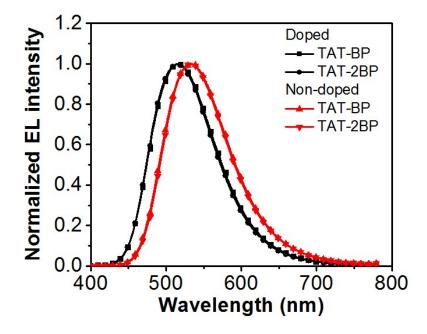
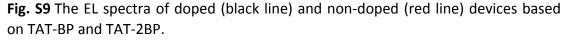


Fig. S7 Transient photoluminescence decay curves of emitters in neat films (A) and emitters (30 wt %) doped in H2 films (B) measured at 300 K under argon atmosphere.


Table S3 Fluorescence lifetimes and quantum yields (PLQYs) of the nondoped and doped films of TAT-BP and TAT-2BP.


	τ _p (ns)	τ _d (μs)	PLQY
TAT-BP neat film	46.7	0.79	51%
TAT-2BP neat film	37.3	0.54	44%
TAT-BP doped film	51.3	2.15	80%
TAT-2BP doped film	50.2	2.04	76%

The doped films have delay fluorescence lifetimes of 2.15 μ s for TAT-BP and 2.04 μ s for TAT-2BP, which are longer than non-doped ones (0.79 μ s for TAT-BP, 0.54 μ s for TAT-2BP). Meanwhile, doped films exhibit PLQY of 80% for TAT-BP and 76% for TAT-2BP, which are higher than the non-doped ones (51% for TAT-BP, 44% for TAT-2BP). The longer delayed fluorescence lifetimes and higher PLQYs in doped films should be attributed to the reduced exciton quenching.

Fig. S8 The J-V curves of doped (black line) and non-doped (red line) devices based on TAT-BP and TAT-2BP.

TAT-BP and TAT-2BP exhibit similar EL spectra in both doped devices and non-doped devices. Their doped devices show the emission maximum at 516 nm, while their non-doped devices show the emission maximum at 533 nm. Compared to the nondoped devices, the blue-shifted emission in the doped devices should be attributed to the suppressed intermolecular dipole-dipole interaction and weakened intramolecular charge transfer in the less polar doped films.