Supporting Information

A new ternary ZnO/ZnS/MoS₂ SERS substrate derived from polyoxomolybdate/ZIF-8 host-guest framework

Di Yin,^a Ming-Liang Wang,^a Ying-Zi Wang,^a Xun Hu,^a Bo Liu,^b Hong Liu,^{*a,c} Lulu Ma,^a and Guang-Gang Gao^{*a,c}

a. School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Email: mse_liuh@ujn.edu.cn.; mse_gaogg@ujn.edu.cn.

b. Key Laboratory of Preparation and Application of Environmental Friendly Materials, the Ministry of Education, Jilin Normal University, Siping, 136000, China .

c. College of Pharmacy, Jiamusi University, Jiamusi 154007, China.

E-mail: mse_liuh@ujn.edu.cn; mse_gaogg@ujn.edu.cn

The calculation method of the enhancement factor (EF)

The EF of ZnMoNCs substrate is calculated according to the following equation:

 $EF = (I_{SERS}/I_{NR}) \times (N_{NR}/N_{SERS})$ $= (I_{SERS}/I_{NR}) \times [(S_{laser} \times h \times C_{NR} \times N_A)/(S_{laser}/S_{MPY})]$

Where I_{SERS} and I_{NR} are the intensities of 4-MPY in surface enhanced Raman and Raman spectra respectively; N_{SERS} and N_{NR} represent the corresponding number of molecules in the surface enhanced Raman spectra and Raman spectra respectively. C_{NR} is the corresponding concentration of 4-MPY used in the Raman spectra, and here C_{NR} is 0.5 mol/L. h is the effective layer depth within which each 4-MPY molecule yields the same contribution to the Raman signal as those localized in the ideally focused plane and here h is calculated to be 17.88 µm. S_{laser} is the area of laser focused on the sample (here, laser diameter is 1 µm); S_{MPY} is the area of per 4-MPY molecule. N_A is the Avogadro constant. The intensity of the band at 1023 cm⁻¹ is used to calculate the value of the EF. The ratio of intensity (I_{SERS}/I_{NR}) is about 70 on the basis of the spectra shown in Fig 4. The value of EF is estimated to be around 1.4×10^8 .

Fig. S1 FTIR spectra of ZIF-8 and PMo₁₂@ZIF-8.

Fig. S2 XRD patterns of PMo₁₂, ZIF-8 and PMo₁₂@ZIF-8.

Fig. S3 XRD patterns of ZnO/ZnS, ZnO/MoS_2 and ZnS/MoS_2 .

Fig. S4 UV-vis absorption spectra of residual solution after adsorption of 4-MPY $(1 \times 10^{-3} \text{ M})$ on different samples.

Fig. S5 (a) SERS spectra of 4-MPY adsorbed on different ZnMoNCs substrates; (b) the histogram of the Raman intensity of 4-MPY at 1023 cm⁻¹ on different ZnMoNCs substrates (the error bars indicate the standard deviations from five measurements).

Fig. S6 XRD patterns of the different ZnMoNCs substrates.

Fig. S7 UV-vis DRS spectra of the different ZnMoNCs substrates (EDS analyses for Mo elements are 7.7%, 10.1%, 21.4%, 20.6%, 15.8% and 14.7% for 1-ZnMoNCs, 2-ZnMoNCs, 3-ZnMoNCs, 4-ZnMoNCs, 5-ZnMoNCs and 6-ZnMoNCs, respectively).

Fig. S8 SERS spectra of time-dependent catalytic degradation of rhodamine 6G on 3-ZnMoNCs substrate (the time interval is 5 min).

Raman		SEDS	Assignment
Solid	Solution	SERS	Assignment
987 s	992 w	1024 s	a ₁ ring breathing
1041 s	1046 w	1063 w	a_1 ring breathing/ $\beta_{(C-H)}$
1198 m	1100 w		$9a_1 \; \beta_{(CH)} / \delta_{(NH)}$
		1120 m	$12a_1$ ring breathing/v _(C-S)
1246 vw	1277 w	1239 w	$9a_1 \beta_{(CH)}$
1396 m		1412 w	V _(C-N-C)
1457 vw	1458 w	1435 w	$19a_1 \nu_{(C=C/C=N)}$
1616 w		1593 s	$b_2 v_{(C=C)}$

Table 1 The Raman/SERS shifts (cm⁻¹) and assignments of 4-MPY molecule on 3-

ZnMoNCs substrate.

v: stretching vibration, β : rocking vibration, δ , bending vibrations; s: strong, m: medium, w: weak, vw: very weak.

Samples	Band gap / eV
ZnO	3.24
ZnS	3.72
MoS_2	
Physical mixing	3.09
1-ZnMoNCs	3.02
2-ZnMoNCs	2.98
3-ZnMoNCs	2.96
4-ZnMoNCs	2.95
5-ZnMoNCs	2.94
6-ZnMoNCs	2.90

Table 2 The band gap (Eg) values of different materials.