Supporting Information

High performance solution-processed green phosphorescent organic light-emitting diodes with high current efficiency and long-term stability

Athithan Maheshwaran,^a Vijaya Gopalan Sree,^a Ho-Yeol Park,^a Woosum Cho,^a Hyein Kim,^a Raja Kumaresan,^a Youngkwang Kim,^b Jae Chol Lee,^b Myungkwan Song,^{c*} and Sung-Ho Jin,^{a*}

A. Maheshwaran, Dr. V. G. Sree, H. Kim, H.-Y. Park, Dr. W. Cho, H. Kim, R. Kumaresan, Prof. S.-H. Jin

^aDepartment of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea

E-mail: shjin@pusan.ac.kr

Y. Kim, Dr. J. C. Lee

^bLG Display E6 Block LG Science Park 30, Magokjungang 10-ro, Gangseo-gu, Seoul 07796, Republic of Korea

Dr. M. Song

^cAdvanced Functional Thin Films Department Surface Technology Division Korea Institute of Materials Science (KIMS) 797 Changwondaero, Changwon, Gyeongnam 51508, Republic of Korea E-mail: <u>smk1017@kims.re.kr</u>

Theoretical Computation

DFT calculations were performed for both Ir(III) complexes and host molecules. Non-metal atoms of C, H, N, F, P and O were described by the all-electron basis set of B3LYP/6-31G (d). The effective core potentials with a B3LYP/LanL2DZ basis set were used for Ir atoms. Both ground and excited state calculations were performed for all molecules. The excitation behaviors of the complexes were computed by time-dependent DFT (TD-DFT) method based on optimized geometries at the ground states. All calculations were carried out by using the Gaussian 09 program.

Scheme S1. Synthetic routes of ancillary ligands and *m*-CBPPO1 intermediates.

Fig. S1. ¹H NMR and mass spectra of sym-Ir1, asym-Ir2 and *m*-CBPPO1.

Sample Info : Ir(dpp)

Area Percent Report

Sorted By		=	Sign	al
Multiplier:			:	1.0000
Dilution:			:	1.0000
Use Multiplier	5	Dilution	Factor	with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area 8	
1	7.693	MM	0.5155	3320.80127	107.37209	98.6407	
2	13.633	MM	0.3373	45.76337	2.26142	1.3593	

Totals : 3366.56464 109.63352

Signal 2: DAD1 F, Sig=300,4 Ref=360,100

Totals : 367.75620 11.69084

Sample Info : Ir(ppp) in THF

Fig. S2. HPLC chromatograms of sym-Ir1 and asym-Ir2.

g. S3. (a) Calculated electrostatic surface potentials of Ir(III) complexes and *m*-CBPPO1 and, (b) E_T state visualization of sym-Ir1 and asym-Ir2 complexes.

Fig. S4. PL decay curves measured for sym-Ir1 and asym-Ir2 in CH_2Cl_2 solution (1 x 10⁻⁴M) upon N₂ purging.

Fig. S5. Cyclic voltammograms of (a) sym-Ir1, asym-Ir2 and (b) *m*-CBPPO1.

Fig. S6. Absorption coefficient spectra for sym-Ir1, asym-Ir2 and m-CBPPO1.

Fig. S7. TGA analysis of (a) sym-Ir1, asym-Ir2 and (b) *m*-CBPPO1.

Fig. S8. DSC analysis of (a) sym-Ir1, asym-Ir2 (insert showing the T_g of sym-Ir1) and (b) m-CBPPO1ataheatingrateof10°Cmin⁻¹.

Fig. S9. Surface morphologies (3D images) of solution processed films.

Fig. S10. EQE-current density (EQE-J) dependence of devices with complex sym-Ir1. The solidlinesstandfortheTTAfittingcurve.

Fig. S11. Repeatability of the devices fabricated using the optimized structure using complexes(a)sym-Ir1and(b)asym-Ir2.

Dopant	EQE _{max} (%)	CE _{max} (cd/A)	CE _{max} (cd/A) Devcie fabrication		Reference
Sym-Ir1 (green)	20.82	68.72	Solution process	m-CBPPO1(New host) / TPBi	This work
Ir3 (green)	19.40	85.31	Solution-process	ТСТА/ТРВі	1
Ir2 (Deep-blue)	3.8	4.3	Vaccum-process	TSPO1	2
G2 (green)	19.8	60.6	Vaccum-process	-	3
DPP-2 (blue)	28.3	58.78	Vaccum-process	-	4
Ir-PO (green)	9.67	34.23	Vaccum-process	-	5
PO-Firpic (blue)	7.1	11.1	Solution-process	PVK/OXD	6
Ir(tfmppy) ₂ (tpip) (green)	-	67.95	Vaccum-process	mCP	7
G2 (green)	-	113.23	Vaccum-process	mCP	8
Ir(tfmppy) ₂ (tpip) (green)	21.9	83.53	Vaccum-process	D-QDPO (new host)	9
G4 (green)	-	50.8	Vaccum-process	SimCP2	10
G4 (green)	29.5	92.83	Vaccum-process	PPO21	11
Ir(dfptfmpm) tpip (green)	-	54.29	Vaccum-process	mCP	12

Table S1 Literature summary of phosphine oxide functionalized Ir(III) complexes for PHOLEDs

References

- V. G. Sree, A. Maheshwaran, H. Kim, H-Y. Park, Y. Kim, J. C. Lee, M. Song, S-H. Jin, *Adv. Funct. Mater.*, 2018, 28, 1804714.
- G. Sarada, A. Maheshwaran, W. Cho, T. Lee, S. H. Han, J. Y. Lee, S-H. Jin, *Dyes Pigm.*, 2018, **150**, 8.
- F. Zhang, W. Li, Y. Yu, Y. Jing, D. Ma, F. Zhang, S. Li, G. Cao, Z. Li, G. Guo, B. Wei,
 D. Zhang, L. Duan, C. Li, Y. Feng, B. Zhai, *J. Mater. Chem. C*, 2016, 4, 5475.
- Z-G. Wu, Y-M. Jing, G-Z. Lu, J. Zhou, Y-X. Zheng, L. Zhou, Y. Wang, Y. Pan, *Sci. Rep.* DOI: 10.1038/srep38478
- G. Zhou, Q. Wang, C-L. Ho, W-Y. Wong, D. Ma, L. Wang, Z. Lin, *Chem. Asian J.*, 2008, 3, 1841
- 6. C. Fan, Y. Li, C. Yang, H. Wu, J. Qin, Y. Cao, Chem. Mater., 2012, 24, 4587.
- Y-C. Zhu, L. Zhou, H-Y. Li, Q-L. Xu, M-Y. Teng, Y-X. Zheng, J-L. Zuo, H-J. Zhang, X-Z. You, *Adv. Mater.*, 2011, 23, 4046.
- H-Y. Li, L. Zhou, M-Y. Teng, Q-L. Xu, C. Lin, Y-X. Zheng, J-L. Zuo, H-J. Zhang, X-Z.
 You, J. Mater. Chem. C, 2013, 1, 565.
- Z- G. Wu, J. Zhou, L. Yu, G. Karotsis, Y. Wang, Y-X. Zheng, Y. Pan, J. Mater. Chem. C, 2017, 5, 8579.
- Q-L. Xu, C-C. Wang, T-Y. Li, M-Y. Teng, S. Zhang, Y-M. Jing, X. Yang, W-N. Li, C. Lin, Y-X. Zheng, J-L. Zuo, X-Z. You, *Inorg. Chem.*, 2013, **52**, 4916.
- 11. H-B. Han, Z-L. Tu, Z-G. Wu, Y-X. Zheng, *Dyes Pigm*. DOI:10.1016/j.dyepi g.2018.09.017.
- 12. Y-H. Zhou, J. Xu, Z-G. Wu, Y-X. Zheng, J. Organomet. Chem., 2017, 848, 231.

Complex	State	λcal [nm]	f	Composition	Assignments
sym-Ir1	T1	504		H→L [92.7]	MLCT/LLCT/ππ*
	S 1		0.016	H→L [96.9]	MLCT/LLCT/ππ*
asym-Ir2	T1	506		H→L [91.1]	MLCT/LLCT/ππ*
	S 1		0.009	H→L [97.2]	MLCT/LLCT/ππ*

Table S2. Theoretical calculation results for symmetric and asymmetric Ir(III) complexes.

 $^{a}H\rightarrow L$ represents the HOMO to LUMO transition. f stands for oscillator strength.

Complex	abso	rption ^a				
	λ (nm) {ε, 10	³ L mol ⁻¹ cm ⁻¹ }				
sym-Ir1	333 (38.1), 379 (15.4), 405 (11.4), 453 ((6.2)			
sym-Ir2	334 (42.9), 404	4 (12.0),454 (7.6)				
<i>m</i> -CBPPO1	293 (53.3)), 319 (46.1)				
^a Absorption	measurements o	f complexes	were	taken	in	CH ₂ Cl _{2.}

 Table S3. Absorption coefficients for sym-Ir1, asym-Ir2 and m-CBPPO1.

Time	EQE_C	EQE_D	Luminance_C	Luminance_D
(Hours)	(%)	(%)	(cd m ⁻²)	(cd m ⁻²)
0	18.2	15.2	351.45	302.48
50	15.14	11.23	310.11	257.42
100	14.26	10.18	265.44	199.57
150	13.76	9.59	254.59	185.29
200	13.47	9.29	249.32	177.51
250	13.15	8.93	242.97	168.97
300	12.83	8.59	236.62	160.83
350	12.54	8.27	229.87	155.25
400	12.28	8.00	225.16	149.79

 Table S4. EQE and luminance values for devices C and D at regular intervals.

Stability of the devices measured at 10 mA cm⁻².