Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary information for

Electric dipole moment-assisted charge extraction and effective defect passivation in PH1000-based perovskite solar cells by incorporating PCBM and TIPD into CH₃NH₃PbI₃ layer

Yujuan Weng,^a§ Zhitao Shen, ^a§ Mingxuan Guo,^a Fan Wu^c, Fumin Li^a, Liangxin Zhu,^a Lanyu Ling,^b Chong Chen^{a*}

^aHenan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, P.R.China,

^bSchool of Physics and Electronics, Henan University, Kaifeng 475004, P.R.China

^cSchool of science and key lab of optoelectronic material and device, Huzhou University, Huzhou, 313000, P.R.China

1. First-principles calculations

Electronic structure calculations are performed with the density functional theory as implemented in the Vienna ab initio simulation package,^{1,2} employing projected augmented wave potentials to describe the atomic core electrons and a plane wave basis set with a kinetic energy cutoff of 480 eV to expand the Kohn–Sham electronic states. For the exchange and correlation functional, we used the generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE) form.³ In order to account for interactions between CH₃NH₃PbI₃ and TIPD, a periodic slab model was constructed. A 2 × 2 (17.6 Å × 17.6 Å) tetragonal CH₃NH₃PbI₃ (001) surface with 5 atomic layers was cut from the optimized bulk geometry in a previous study.⁴ The TIPD molecule was adsorbed on one of the surfaces, and a 20 Å vacuum layer was added along the *z* direction. The Brillouin zone sampling was restricted to the Γ point due to the large supercell size, which consists of 259 atoms in total. The DFT-D3 method with Becke-Jonson damping⁵ was adopted to include van der Waals interactions. During structural optimization, the three atomic layers of CH₃NH₃PbI₃ far away from the TIPD were fixed, and the other two atomic layers of CH₃NH₃PbI₃ and the TIPD were relaxed until the residual forces were less than 0.05 eV Å⁻¹. Static calculations based on the optimized geometry were performed for the charge density analysis.

In addition, an isolated MA molecule was optimized using the B3LYP^{6,7} exchange and correlation

E-mail: chongchen@henu.edu.cn (Dr. Chong Chen)

functional combining with the aug-cc-pVDZ basis set to obtain its electric dipole moment, electronic density and electrostatic potential (ESP). The calculations were performed by Gaussian 09 program.⁸

References:

- 1. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, R558
- 2. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169
- 3. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 1996, 77, 3865.
- 4. Feng, J.; Xiao, B. J. Phys. Chem. Lett., 2014, 5, 1278.
- 5. Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comp. Chem., 2011, 32, 1456.
- 6. Becke, A. D. J. Chem. Phys., 1993, 98, 5648.
- 7. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter, 1988, 37, 785.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al., *Gaussian 09 (Revision D.01)*, Gaussian Inc., Wallingford CT, 2013.

Fig. S1 XRD patterns of the prepared TIPD films dried at 25°C and 100°C, respectively.

Fig. S2 Electrochemical impedance spectra (EIS) of the PSCs under illumination100 mW/cm².

Table	S1 Th	e fitting	parameters	for	measured	EIS	results	with	different	device
rabic		c munig	parameters	101	measureu	LID	results	vv I tIII	uniterent	ucvicc.

Sample	$R_s(\Omega^{\cdot} \mathrm{cm}^2)$	$R_{\rm CT1}$ (mA cm ⁻²)	$R_{\rm CT2}$ (mA cm ⁻²)	CPE_1 (µF cm ⁻²)	CPE_2 (nF cm ⁻²)
PSCs with PCBM:TIPD-blended	22.81	774.9	274.4	2.28	6.27
anti-solvent treatment					
PSCs with CBZ anti-solvent	38.64	1875	452.6	1.56	11.9
treatment					