# Supplementary Material (ESI) for ChemComm # This journal is © The Royal Society of Chemistry 2000 # CCDC Number: 182/1824 data_jjen0 _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C B4 F6 O' _chemical_formula_weight 185.25 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'B' 'B' 0.0013 0.0007 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'F' 'F' 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M P2(1)/n loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 10.909(3) _cell_length_b 11.518(3) _cell_length_c 11.098(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.548(18) _cell_angle_gamma 90.00 _cell_volume 1394.4(6) _cell_formula_units_Z 8 _cell_measurement_temperature 292(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description ? _exptl_crystal_colour ? _exptl_crystal_size_max 0.70 _exptl_crystal_size_mid 0.40 _exptl_crystal_size_min 0.40 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.765 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 704 _exptl_absorpt_coefficient_mu 0.218 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min 0.8625 _exptl_absorpt_correction_T_max 0.9180 _exptl_absorpt_process_details ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 292(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART CCD' _diffrn_measurement_method ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 4028 _diffrn_reflns_av_R_equivalents 0.0279 _diffrn_reflns_av_sigmaI/netI 0.0557 _diffrn_reflns_limit_h_min -4 _diffrn_reflns_limit_h_max 14 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_k_max 14 _diffrn_reflns_limit_l_min -9 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 2.55 _diffrn_reflns_theta_max 27.51 _reflns_number_total 2363 _reflns_number_gt 1117 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Bruker SMART ' _computing_cell_refinement 'Bruker SMART' _computing_data_reduction SAINT _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics SHELXTL _computing_publication_material xcif _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0576P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.032(2) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_number_reflns 2363 _refine_ls_number_parameters 218 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0993 _refine_ls_R_factor_gt 0.0419 _refine_ls_wR_factor_ref 0.1102 _refine_ls_wR_factor_gt 0.0939 _refine_ls_goodness_of_fit_ref 0.831 _refine_ls_restrained_S_all 0.831 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C11 C 0.3379(3) 0.7780(3) 0.3488(3) 0.0530(8) Uani 1 1 d . . . O11 O 0.3946(2) 0.7250(2) 0.4126(2) 0.0764(7) Uani 1 1 d . . . B11 B 0.2605(3) 0.8480(3) 0.2602(3) 0.0514(9) Uani 1 1 d . . . B12 B 0.2041(3) 0.7598(3) 0.1529(4) 0.0577(11) Uani 1 1 d . . . B13 B 0.3486(3) 0.9513(3) 0.1963(4) 0.0574(10) Uani 1 1 d . . . B14 B 0.1450(3) 0.9146(3) 0.3318(4) 0.0586(10) Uani 1 1 d . . . F11 F 0.22271(19) 0.64758(15) 0.14778(17) 0.0924(7) Uani 1 1 d . . . F12 F 0.13658(17) 0.80055(16) 0.06422(17) 0.0786(6) Uani 1 1 d . . . F13 F 0.46561(16) 0.96736(16) 0.2216(2) 0.0943(7) Uani 1 1 d . . . F14 F 0.30448(17) 1.02354(16) 0.11641(18) 0.0845(6) Uani 1 1 d . . . F15 F 0.12554(17) 0.90948(19) 0.4485(2) 0.0953(7) Uani 1 1 d . . . F16 F 0.06658(17) 0.97978(17) 0.27416(19) 0.0899(7) Uani 1 1 d . . . C21 C 0.1751(3) 0.9614(2) 0.8441(3) 0.0523(8) Uani 1 1 d . . . O21 O 0.11719(19) 1.01000(18) 0.9094(2) 0.0698(7) Uani 1 1 d . . . B21 B 0.2526(3) 0.8938(3) 0.7551(3) 0.0531(10) Uani 1 1 d . . . B22 B 0.3047(3) 0.9867(3) 0.6493(4) 0.0605(10) Uani 1 1 d . . . B23 B 0.1654(3) 0.7936(3) 0.6851(3) 0.0577(10) Uani 1 1 d . . . B24 B 0.3698(3) 0.8290(3) 0.8272(5) 0.0669(12) Uani 1 1 d . . . F21 F 0.27834(19) 1.09785(16) 0.64482(17) 0.0940(7) Uani 1 1 d . . . F22 F 0.37588(17) 0.95068(17) 0.56255(17) 0.0871(7) Uani 1 1 d . . . F23 F 0.04606(16) 0.78279(17) 0.69751(18) 0.0874(7) Uani 1 1 d . . . F24 F 0.21371(17) 0.71770(15) 0.61087(16) 0.0803(6) Uani 1 1 d . . . F25 F 0.38930(17) 0.83206(19) 0.9442(2) 0.0989(8) Uani 1 1 d . . . F26 F 0.45171(17) 0.76862(18) 0.76818(19) 0.0948(7) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C11 0.0553(18) 0.0569(18) 0.047(3) -0.0041(17) 0.0068(16) 0.0037(15) O11 0.0771(16) 0.0856(17) 0.066(2) 0.0126(13) -0.0037(13) 0.0218(13) B11 0.0520(19) 0.052(2) 0.050(3) 0.0054(17) -0.0088(17) 0.0046(15) B12 0.065(2) 0.052(2) 0.056(3) 0.0138(19) 0.004(2) 0.0009(16) B13 0.061(2) 0.052(2) 0.059(3) -0.0051(19) -0.0063(19) -0.0035(17) B14 0.063(2) 0.057(2) 0.056(4) 0.0042(19) -0.014(2) 0.0038(17) F11 0.1401(18) 0.0516(12) 0.0851(17) -0.0065(10) -0.0192(12) 0.0047(11) F12 0.0910(13) 0.0778(13) 0.0666(16) 0.0097(10) -0.0212(11) -0.0109(10) F13 0.0642(12) 0.0772(14) 0.141(2) 0.0094(12) -0.0092(11) -0.0200(10) F14 0.1024(15) 0.0664(12) 0.0845(16) 0.0208(11) -0.0083(11) -0.0062(10) F15 0.0881(14) 0.1236(18) 0.075(2) -0.0002(12) 0.0119(13) 0.0301(12) F16 0.0779(13) 0.0843(14) 0.1071(18) -0.0007(11) -0.0208(11) 0.0301(10) C21 0.0519(17) 0.0509(17) 0.054(3) 0.0100(15) -0.0054(16) -0.0009(14) O21 0.0717(15) 0.0751(15) 0.0626(17) -0.0058(12) 0.0076(12) 0.0139(12) B21 0.0530(19) 0.049(2) 0.057(3) 0.0005(16) 0.0153(17) 0.0057(14) B22 0.066(2) 0.057(2) 0.058(3) -0.0061(19) 0.004(2) -0.0078(17) B23 0.066(2) 0.045(2) 0.062(3) 0.0050(18) 0.0177(19) 0.0035(16) B24 0.060(2) 0.059(2) 0.082(4) 0.004(2) 0.019(2) 0.0031(18) F21 0.1466(19) 0.0525(12) 0.0832(16) 0.0131(10) 0.0136(12) 0.0020(11) F22 0.0987(15) 0.0885(14) 0.0748(16) -0.0032(10) 0.0345(12) -0.0139(11) F23 0.0672(13) 0.0814(13) 0.1139(18) -0.0184(11) 0.0217(10) -0.0198(10) F24 0.0971(14) 0.0655(12) 0.0787(15) -0.0197(10) 0.0178(11) 0.0010(10) F25 0.0922(15) 0.1271(19) 0.077(2) 0.0084(14) -0.0087(12) 0.0280(13) F26 0.0747(13) 0.0935(15) 0.1166(18) 0.0015(12) 0.0184(11) 0.0313(10) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C11 O11 1.117(3) . ? C11 B11 1.522(5) . ? B11 B12 1.677(5) . ? B11 B14 1.681(5) . ? B11 B13 1.690(5) . ? B12 F11 1.310(4) . ? B12 F12 1.311(4) . ? B13 F14 1.305(4) . ? B13 F13 1.317(4) . ? B14 F16 1.302(4) . ? B14 F15 1.315(4) . ? C21 O21 1.116(3) . ? C21 B21 1.521(4) . ? B21 B24 1.677(6) . ? B21 B23 1.681(5) . ? B21 B22 1.690(5) . ? B22 F22 1.310(4) . ? B22 F21 1.314(4) . ? B23 F24 1.315(4) . ? B23 F23 1.317(4) . ? B24 F26 1.313(4) . ? B24 F25 1.314(5) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O11 C11 B11 178.8(3) . . ? C11 B11 B12 109.6(3) . . ? C11 B11 B14 110.5(3) . . ? B12 B11 B14 109.9(3) . . ? C11 B11 B13 109.3(3) . . ? B12 B11 B13 109.5(3) . . ? B14 B11 B13 108.0(3) . . ? F11 B12 F12 114.0(3) . . ? F11 B12 B11 124.9(3) . . ? F12 B12 B11 121.1(3) . . ? F14 B13 F13 113.9(3) . . ? F14 B13 B11 121.8(3) . . ? F13 B13 B11 124.3(3) . . ? F16 B14 F15 113.5(3) . . ? F16 B14 B11 121.5(4) . . ? F15 B14 B11 125.0(3) . . ? O21 C21 B21 179.2(3) . . ? C21 B21 B24 110.1(3) . . ? C21 B21 B23 109.6(2) . . ? B24 B21 B23 109.9(3) . . ? C21 B21 B22 108.7(3) . . ? B24 B21 B22 110.7(3) . . ? B23 B21 B22 107.9(3) . . ? F22 B22 F21 114.3(3) . . ? F22 B22 B21 121.1(3) . . ? F21 B22 B21 124.6(3) . . ? F24 B23 F23 113.9(3) . . ? F24 B23 B21 121.2(3) . . ? F23 B23 B21 124.9(3) . . ? F26 B24 F25 113.7(4) . . ? F26 B24 B21 121.1(4) . . ? F25 B24 B21 125.2(3) . . ? _diffrn_measured_fraction_theta_max 0.738 _diffrn_reflns_theta_full 27.51 _diffrn_measured_fraction_theta_full 0.738 _refine_diff_density_max 0.166 _refine_diff_density_min -0.148 _refine_diff_density_rms 0.045 data_jenc0 _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C B4 Cl6 O' _chemical_formula_weight 283.95 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'B' 'B' 0.0013 0.0007 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting ' Rhombohedral on Hexagonal axes ' _symmetry_space_group_name_H-M R3m loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' '-y, -x, z' '-x+y, y, z' 'x, x-y, z' 'x+2/3, y+1/3, z+1/3' '-y+2/3, x-y+1/3, z+1/3' '-x+y+2/3, -x+1/3, z+1/3' '-y+2/3, -x+1/3, z+1/3' '-x+y+2/3, y+1/3, z+1/3' 'x+2/3, x-y+1/3, z+1/3' 'x+1/3, y+2/3, z+2/3' '-y+1/3, x-y+2/3, z+2/3' '-x+y+1/3, -x+2/3, z+2/3' '-y+1/3, -x+2/3, z+2/3' '-x+y+1/3, y+2/3, z+2/3' 'x+1/3, x-y+2/3, z+2/3' _cell_length_a 11.150(5) _cell_length_b 11.150(5) _cell_length_c 7.586(4) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 816.8(7) _cell_formula_units_Z 3 _cell_measurement_temperature 292(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description ? _exptl_crystal_colour ? _exptl_crystal_size_max 0.6 _exptl_crystal_size_mid 0.4 _exptl_crystal_size_min 0.4 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.732 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 408 _exptl_absorpt_coefficient_mu 1.520 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_absorpt_process_details ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 292(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART CCD ' _diffrn_measurement_method ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 799 _diffrn_reflns_av_R_equivalents 0.0312 _diffrn_reflns_av_sigmaI/netI 0.0356 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 14 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min -9 _diffrn_reflns_limit_l_max 6 _diffrn_reflns_theta_min 3.42 _diffrn_reflns_theta_max 27.51 _reflns_number_total 316 _reflns_number_gt 280 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SMART' _computing_data_reduction SAINT _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics SHELXTL _computing_publication_material xcif _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0562P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.062(6) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.1(3) _refine_ls_number_reflns 316 _refine_ls_number_parameters 29 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0417 _refine_ls_R_factor_gt 0.0391 _refine_ls_wR_factor_ref 0.0939 _refine_ls_wR_factor_gt 0.0932 _refine_ls_goodness_of_fit_ref 0.973 _refine_ls_restrained_S_all 0.971 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group B1 B 0.6667 0.3333 0.6344(14) 0.044(2) Uani 1 6 d S . . B2 B 0.7504(3) 0.5008(7) 0.5679(9) 0.0496(14) Uani 1 2 d S . . C1 C 0.6667 0.3333 0.8380(14) 0.057(3) Uani 1 6 d S . . O1 O 0.6667 0.3333 0.9817(11) 0.085(3) Uani 1 6 d S . . Cl1 Cl 0.77333(8) 0.54667(16) 0.3449(2) 0.0783(7) Uani 1 2 d S . . Cl2 Cl 0.81890(9) 0.63780(18) 0.7184(2) 0.0775(7) Uani 1 2 d S . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 B1 0.045(3) 0.045(3) 0.043(5) 0.000 0.000 0.0224(17) B2 0.043(2) 0.048(3) 0.059(4) -0.008(3) -0.0041(15) 0.0241(16) C1 0.059(4) 0.059(4) 0.053(6) 0.000 0.000 0.029(2) O1 0.102(5) 0.102(5) 0.050(4) 0.000 0.000 0.051(2) Cl1 0.0984(13) 0.0592(11) 0.0642(9) 0.0109(8) 0.0054(4) 0.0296(5) Cl2 0.0835(12) 0.0530(10) 0.0859(11) -0.0226(8) -0.0113(4) 0.0265(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag B1 C1 1.544(15) . ? B1 B2 1.694(7) 3_665 ? B1 B2 1.694(7) 2_655 ? B1 B2 1.694(7) . ? B2 Cl2 1.748(7) . ? B2 Cl1 1.748(7) . ? C1 O1 1.091(14) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 B1 B2 107.3(4) . 3_665 ? C1 B1 B2 107.3(4) . 2_655 ? B2 B1 B2 111.5(4) 3_665 2_655 ? C1 B1 B2 107.3(4) . . ? B2 B1 B2 111.5(4) 3_665 . ? B2 B1 B2 111.5(4) 2_655 . ? B1 B2 Cl2 121.9(5) . . ? B1 B2 Cl1 122.0(5) . . ? Cl2 B2 Cl1 116.1(4) . . ? O1 C1 B1 180.000(9) . . ? _diffrn_measured_fraction_theta_max 0.996 _diffrn_reflns_theta_full 27.51 _diffrn_measured_fraction_theta_full 0.996 _refine_diff_density_max 0.266 _refine_diff_density_min -0.256 _refine_diff_density_rms 0.059