SUPPLEMENTARY INFORMATION

The orientation matrices of the monoclinic $\alpha-\mathbf{1 d}$ and triclinic $\beta-\mathbf{1 d}$ are

| $\alpha-1 d$ | $\beta-\mathbf{1 d}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0.04498 | 0.03470 | -0.05025 | 0.09575 | 0.00268 | 0.00270 |
| 0.01226 | 0.04616 | 0.04715 | 0.01456 | 0.04294 | -0.08065 |
| 0.05998 | 0.01658 | -0.02612 | -0.04025 | 0.08283 | 0.00623 |

The phase transformation is described by matrices

	$\alpha-\mathbf{1 d}$	$\beta-\mathbf{1 d}$	$\alpha-\mathbf{1 d}$	$\beta-\mathbf{1 d}$	
$-1 / 2$	$1 / 2$	$-1 / 2$	-1	1	0
$1 / 2$	$1 / 2$	$-1 / 2$	1	1	-1
0	0	-1	0	0	-1

which give the calculated orientation matrices
for α-1d
-0.04654 $0.04922-0.05192$
0.014190 .028760 .05189
0.06154 0.02129-0.02752
for β-1d
$0.07965-0.01028 \quad 0.01556$
$0.03390 \quad 0.05844-0.09332$
$-0.04340 \quad 0.076560 .00953$
(note that the crystal tilted on its mount during the phase transition; this may in part account for the discrepancy between the calculated and measured orientation matrices)

The β - $1 \mathbf{d}$ unit cell calculated from the transformation matrix is
$a=11.924, b=13.598, c=13.936, \alpha=51.28, \beta=62.88, \gamma=63.57$;
cf. the measured one of

$$
a=10.209, b=12.334, c=13.904, \alpha=63.78, \beta=74.73, \gamma=70.54
$$

