SUPPLEMENTARY INFORMATION

The orientation matrices of the monoclinic α -1d and triclinic β -1d are

α- 1d	ß-1d
-0.04498 0.03470 -0.05025	0.09575 0.00268 0.00270
0.01226 0.04616 0.04715	0.01456 0.04294 -0.08065
0.05998 0.01658 -0.02612	-0.04025 0.08283 0.00623

The phase transformation is described by matrices

	α- 1d	β-1d	α- 1d	β-1d	
-1/2	1/2	-1/2	-1	1	0
1/2	1/2	-1/2	1	1	-1
0	0	-1	0	0	-1

which give the calculated orientation matrices

for α-1d	for β- 1d
-0.04654 0.04922 -0.05192	0.07965 -0.01028 0.01556
0.01419 0.02876 0.05189	0.03390 0.05844 -0.09332
0.06154 0.02129 -0.02752	-0.04340 0.07656 0.00953

(note that the crystal tilted on its mount during the phase transition; this may in part account for the discrepancy between the calculated and measured orientation matrices)

The B-1d unit cell calculated from the transformation matrix is

a=11.924, *b*=13.598, *c*=13.936, α =51.28, β =62.88, γ=63.57;

cf. the measured one of

 $a=10.209, b=12.334, c=13.904, \alpha = 63.78, \beta = 74.73, \gamma = 70.54$