A Facile and New Type of Route to the Redox-active Rigid-rod Complex [{Mn(dmpe)₂(C≡CH)}₂(μ-C₄)][PF₆] via Mn-C₂[•] Radical Coupling

Francisco J. Fernández, Olivier Blacque, Montserrat Alfonso and Heinz Berke*

Anorganisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; E-mail:hberke@aci.unizh.ch

Computational details

All calculations reported in the paper were performed using the Amsterdam Density $2000.01.^{1}$ The ADF, release Vosko-Wilk-Nusair Functional program package parametrization^{2a} was used for the local-density approximation (LDA) with the addition of gradient corrections due to Becke^{2b} and Perdew^{2c} (GGA). The hydrogen atom was represented by a double- ξ STO basis function for the 1s orbital and a single- ξ 2p polarization function (ADF database III). The frozen-core approximation was applied for the 1s electrons of the carbon atom, and for the 1s, 2s and 2p electrons of phosphorus and manganese elements. The valence shells of these non-hydrogen elements were described with a triple- ξ STO basis set plus one polarization function (ADF database IV). Optimized geometries and singlet and triplet bonding energies of the states of the model complex $Mn(dHpe)_2(C \equiv CH)(C \equiv C)$ are given below.

References

- (a) E. J. Baerends, D. E. Ellis, and P. Ros Chem. Phys. 1973, 2, 41; (b) L. Versluis and T. Ziegler J. Chem. Phys. 1988, 322, 88; (c) G. te Velde and E. J. Baerends J. Comput. Phys. 1992, 99, 84; (d) C. Fonseca Guerra, J. G. Snijders, G. te Velde and E. J. Baerends Theor. Chem. Acc. 1988, 99, 391.
- 2 (a) S.H. Vosko, L. Wilk and M. Nusair Can. J. Phys. 1980, 58, 1200; (b) A.D. Becke Phys. Rev. A 1988, 38, 3098; (c) J.P. Perdew Phys. Rev. B 1986, 33, 8822.

Optimized geometries and bonding energies

(dHpe) ₂ Mn(C≡C)(C≡CH) spin 0 ADF 2000.01 RunTime: Dec12-2000 09:26:33					
GEOMETRY OPTIMIZATION					
Final Geometry	(x,y,z in Ang	gstrom)			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.000000 0.022778 2.247627 0.000000 -2.247627 -0.022778 0.000000 0.000000 0.000000 -1.679833 0.870171 0.223449 2.758332 3.003219 3.069364 -2.758332 -3.069364 1.679833 -3.069364 1.679833 -0.870171 -0.223449 -1.693511 -1.811314 -2.853935 -3.741389 2.853935 3.741389	0.082648 -0.000721 0.091929 -1.773127 2.042846 0.091929 -0.000721 3.282060 4.355714 -3.078194 -0.560787 -0.888507 1.184376 0.117593 -1.018994 1.151973 -0.560787 -0.888507 1.184376 -1.61994 1.151973 -0.560787 -0.888507 1.184376 -1.651980 -0.346359 1.180418 -0.355827 1.180418 -0.355827			
H -2.123153 H -2.705691 H -3.917156	3.741389 1.693511 1.811314	-0.355827 -1.651980 -0.346359			
Total Bonding En -5.637425841973379 -3537.54 kca -14801.06 b	nergy: 5 hartree al/mol kJ/mol				
Total Charge: Spin Polarization	0.00				
Summary Geometry (Item	Optimization Value	Criterion			
change in energy gradient max	-0.00001868 0.00262557	0.00300000			

change in energy	-0.00001868	0.00300000
gradient max	0.00262557	0.00300000
gradient rms	0.00056906	0.00333333

GEOMETRY OPTIMIZATION					
Final	Geo	ometry	(x,y,z	in	Angstrom)
Mn РРССРРСНССННСННСННННННН НННННН	0. 2. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	000000 261707 195360 000000 261707 000000 000000 874458 006235 027708 015569 320094 314308 874458 006235 027708 746136 941800 284715 134491 284715	0.000 -0.007 2.256 0.000 0.000 -2.256 0.007 0.000 0.000 -1.69 0.855 0.182 2.784 2.994 3.083 -2.784 -2.994 3.083 -2.784 -2.994 -3.085 -0.855 -0.182 -0.855 -0.182 -1.692 -1.820 -2.903 -3.756 1.693 -3.756 -2.904 -3.756	0000 7789 50000 0000 5896 7789 0000 0000 0000 0000 0000 0000 0000	0.086868 0.012469 0.076283 -1.771384 2.074268 0.076283 0.012469 3.308526 4.382106 -3.069486 -0.565399 -0.849505 1.211725 0.088084 -1.036285 1.131514 0.086084 -1.036285 1.131514 -0.565399 -0.849505 1.211725 -1.658009 -0.335131 1.147952 -0.410477 -1.47952 -0.410477
Total Bonding Energy: -5.671409668487392 hartree -3558.86 kcal/mol					
Total Spin I Spin I # Ato	Cha Pola Dens Om	arge: arization sity: Spin	0 n: 2	.00	
1 Mn 10 C		1.4533 0.6098			
Summary Geometry Optimization					

(dHpe)₂Mn(C=C)(C=CH) spin 2 ADF 2000.01 RunTime: Jan09-2001 14:58:33

Item	Value	Criterion
change in energy	-0.00003351	0.00300000
gradient max	0.00118426	0.00300000
gradient rms	0.00039765	0.00333333