B200718E

Supplementary Information

Reversible Near-Infrared Fluorescence Switch by Novel Photochromic Unsymmetrical-Phthalocyanines Hybrids based on Bisthienylethene

Bingzhi Chen, Mingzhong Wang, Yingqi Wu, and He Tian*

Institute of Fine Chemicals, East China University of Science and Technology, Shanghai,

200237, P. R. China

Scheme 1 Synthetic routines and photochromism of the BTE-uPcs. Reaction conditions: a, Mg(OBu)₂, n-BuOH, reflux, 24h; b, CH₃COOH, 50°C, 10h; c, Zn(OAc)₂, chlorobenzen/DMF, 100°C, 5h

A mixture of 1,2-dicyano-1,2-bis(2,5-dimethyl-3-thienyl)ethene (1.0 mmol) and much excessive 1,2-dicyanobenzene (100 mmol) were added to the $Mg(OBu)_2$ suspended in n-BuOH and the mixture was heated for 24h, turning dark blue/green. The solvent was evaporated out, and the residue was treated with CHCl₃. This solution was filtered to remove insoluble phthalocyanine (MgPc) byproduct. The residue was then purified twice

^{*} Corresponding author: Fax:+86-21-64252288; E-mail:tianhe@ecust.edu.cn

by chromatography on silica gel using, at first CHCl₃ and then 2% EtOH in CHCl₃, and the major blue band was collected to get crude Mg(BTE-uPc)(1a) (yield 8 %). The magnesium atom is clearly removed using acetic acid at 50 °C for 10h to give $H_2(BTE-uPc)(2a)$, which was purified by chromatography on silica gel (hexane/CH₂Cl₂(v/v): 1:1). Reaction of 2a with $Zn(OAc)_2$ in chlorobenzene/DMF (v/v: 2/1) proceeds smoothly at 100°C for 5h to get Zn(BTE-uPc) (3a). Structural data of 1a (Mg(BTE-uPc)): UV-Vis (CHCl₃) λ_{max} / nm (ϵ $\times 10^{-5}$ /M⁻¹ cm⁻¹) : 678 (1.33), 653 (0.87), 448 (0.22), 353 (0.86). TOF-MS: calculated for C₄₀H₂₆N₈S₂Mg: 706.8 found: 707.1 (M⁺). Element analysis: calculated C 67.97; H 3.68; N 15.85; found C 67.80; H 3.66; N 15.80 %. Emission (CHCl₃): λ_{max} / nm (excited at λ / nm): 701(365), 703 (445). 2a (H₂(BTE-uPc)): UV-Vis(CHCl₃) λ_{max} / nm ($\epsilon \times 10^{-5}$ /M⁻¹cm⁻¹): 703(1.24), 610(0.97), 564(0.24), 344(0.86). TOF-MS: calculated for C₄₀H₂₈N₈S₂: 684.5, found: 685.1 (M⁺) ¹H NMR (CDCl₃)(⁶ ppm): -0.86(s, 2H, =NH), 2.38(s, 6H, -CH₃), 2.70(s, 6H, -CH₃), 5.05(s, 2H, thienyl aromatic proton). 7.75-9.2(m, 12h, fused benzene proton). Element analysis: calculated C 70.19; H 4.09; N 16.36; found C 70.11; H 4.10; N 16.30 %. **3a** (**Zn**(**BTE-uPc**)): UV-Vis (CHCl₃) λ_{max} / nm ($\epsilon \times 10^{-5}$ /M⁻¹cm⁻¹): 678(1.20), 650(0.86), 597(0.23), 445(0.11), 353(0.56). TOF-MS: calculated for C₄₀H₂₆N₈S₂Zn: 747.9, found; 747.3(M⁺), ¹H NMR(CDCl₃)(δ ppm): 2.27(s, 6H, -CH₃), 2.52(s, 6H, -CH₃), 5.12(s, 2H, thienyl aromatic proton). 7.50-9.00(m, 12h, fused benzene proton). Element analysis: calculated C 64.24; H 3.48; N 14.97; found C 64.20; H 3.46; N 14.90 %. Emission(CHCl₃): λ_{max} / nm (excited at λ / nm): 701(365), 703(445).

Fig. 1 Absorption spectra of compound 1a in $CHCl_3$ (1.3×10^{-5} M) and the changes in absorption of 1a under different irradiation time by light of 365 nm.

