Electronic Supplementary Information

Mechanistic Aspects of Acetone Addition to Metalloaromatic Complexes of Iridium: A DFT Investigation

Mark A. Iron, Jan M. L. Martin,* and

Milko E. van der Boom*

Department of Organic Chemistry, Weizmann Institute of Science, 76100 Re<u>h</u>ovot, Israel.

*Corresponding authors, e-mail: comartin@wicc.weizmann.ac.il milko.vanderboom@weizmann.ac.il

Computational Details:

All calculations were carried out using Gaussian 98 Revision A11¹ running on Compaq ES40 and XP1000 workstations in our group, on the SGI Origin computers of the Faculty of Chemistry and the (Israel) Inter-University Computing Center and on a mini-farm belonging to our group consisting of four Intel Pentium IV and four Intel dual Xeon 2.0 GHz PC's running Red Hat Linux 7.2.

The mPW1K (modified Perdew-Wang 1-parameter for kinetics) DFT exchangecorrelation functional of Truhlar and coworkers² was used to investigate the reaction. This functional is based on the Perdew-Wang exchange functional³ with Adamo and Barone's modified enhancement factor⁴ and the Perdew-Wang correlation functional.³ A larger percentage of Hatree-Fock exchange has been introduced² to circumvent the underestimated barrier heights typical of standard exchange-correlation functionals. It has been shown (e.g., refs^{2, 5-7}) that this functional generally yields much more reliable reaction barrier heights than B3LYP or other "conventional" exchange-correlation functionals. With this functional, two basis set-RECP (relativistic effective core potential) combinations were used. The first, denoted SDD, is the combination of the Huzinaga-Dunning double-ζ basis set on lighter elements with the Stuttgart-Dresden basis set-RECP combination⁸ on transition metals. The second, denoted SDB-cc-pVDZ, combines the Dunning cc-pVDZ basis set⁹ on the main group elements and the Stuttgart-Dresden basis set-RECP on the transition metals with an added *f*-type polarisation exponent taken as the geometric average of the two *f*-exponents given in the Appendix to Ref.¹⁰ Geometry optimisations were carried out using the former basis set while the energetics of the reaction were calculated at these geometries with the latter basis set; this level of theory is conventionally denoted as

mPW1K/SDB-cc-pVDZ//mPW1K/SDD. We have previously recommended this level of theory as better suited than the more popular B3LYP^{11, 12}/LANL2DZ¹³ to investigate reaction mechanisms.⁷ Since Gaussian 98 uses the same number of radial grid points throughout the periodic table, the "ultrafine" grid, i.e., a pruned (99,590) grid, was used throughout the calculations as recommended in Ref.¹⁴ The identities of the transition states were confirmed by performing intrinsic reaction coordinate(IRC) calculations.¹⁵⁻¹⁷

¹ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvidor, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, in 'Gaussian 98, Revision A.11', Pittsburgh PA, 2001.

⁵ B. J. Lynch and D. G. Truhlar, *Journal of Physical Chemistry A*, 2001, **105**, 2936.

² B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, *J. Phys. Chem. A*, 2000, **104**, 4811.

³ J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Perderson, D. J. Singh, and C. Fiolhais, *Physical Reviews B*, 1992, **46**, 6771.

⁴ C. Adamo and V. Barone, J. Chem. Phys., 1998, **108**, 664.

- ⁶ S. Parthiban, G. de Oliveira, and J. M. L. Martin, J. Phys. Chem. A, 2001, 105, 895.
- ⁷ M. A. Iron, H. C. Lo, J. M. L. Martin, and E. Keinan, *Journal of the American Chemical Society*, 2002, **124**, 7041.
- ⁸ M. Dolg, ed. J. Grotendorst, 2000.
- ⁹ T. H. Dunning Jr., *Journal of Chemical Physics*, 1989, **90**, 1007.
- ¹⁰J. M. L. Martin and A. Sundermann, *Journal of Chemical Physics*, 2001, **114**, 3408.
- ¹¹A. D. Becke, J. Chem. Phys., 1993, **98**, 5648.
- ¹²P. J. Stevens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623.
- ¹³P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, **82**, 299.
- ¹⁴J. M. L. Martin, C. W. Bauschlicher, and A. Ricca, *Computer Physics Communications*, 2001, **133**, 189.
- ¹⁵K. Fukui, Accounts of Chemical Research, 1981, 14, 363.
- ¹⁶C. Gonzalez and H. B. Schlegel, *Journal of Chemical Physics*, 1989, **90**, 2154.
- ¹⁷C. Gonzalez and H. B. Schlegel, *Journal of Physical Chemistry*, 1990, **94**, 5523.

Key Geometric Data for Calculated Structures:

3C: X = CH, n = 0 **3O**: X= O, n = 1 **3S**: X = S, n = 1

Bond Length (Å) /	20	20	26
Angle (°)	30	30	35
Ir-C1	1.970	1.957	1.985
C1-C2	1.395	1.395	1.380
C2–C3	1.398	1.407	1.421
C3–C4	1.398	1.382	1.366
C4–X	1.395	1.308	1.375
Ir-X	1.970	1.997	2.310
Ir-C3	3.465	3.400	3.602
Ir-C1-C2	130.2	125.2	131.2
C1-C2-C3	123.8	126.8	129.0
C2-C3-C4	123.2	123.0	126.8
C3-C4-X	123.8	124.2	126.5
C4–X–Ir	130.2	129.9	112.7
C1–Ir–X	87.5	89.8	92.6

45: X = 5, n = 1	

Bond Length (Å) /	40	40	15
Angle (°)	40	40	45
Ir-C1	1.969	2.035	2.040
C1-C2	1.396	1.357	1.356
C2–C3	1.398	1.451	1.454
C3–C4	1.398	1.358	1.351
C4–X	1.396	1.345	1.777
Ir-X	1.969	2.030	2.392
Ir-O5	3.991	2.131	2.140
O5-C6	1.241	1.256	1.256
C3–C6	5.250	4.423	4.693
Ir-C1-C2	130.2	123.5	129.6
C1-C2-C3	123.9	126.3	129.0
C2-C3-C4	123.2	124.7	128.1
C3-C4-X	123.9	126.8	128.5
C4–X–Ir	130.2	124.7	108.3
C1–Ir–X	87.7	91.6	93.8
Ir-O5-C6	76.9	137.4	138.0
C3-C6-O5	126.4	76.2	76.4
C1–Ir–O5	100.1	92.6	93.2
X–Ir–O5	100.1	91.4	92.3

Bond Length (Å) /	50	50	59
Angle (°)	30	50	20
Ir-C1	2.012	2.026	2.033
C1-C2	1.371	1.347	1.342
C2-C3	1.419	1.464	1.477
C3–C4	1.419	1.391	1.392
C4–X	1.371	1.301	1.718
Ir-X	2.011	2.056	2.411
Ir-O5	2.411	2.107	2.092
O5-C6	1.277	1.313	1.325
C3–C6	2.689	2.258	2.090
Ir-C1-C2	124.1	119.6	122.2
C1-C2-C3	125.1	124.0	125.2
C2-C3-C4	122.0	120.8	121.0
C3-C4-X	125.1	125.2	126.3
C4–X–Ir	124.1	119.8	102.1
C1–Ir–X	90.4	89.7	89.9
Ir-O5-C6	128.0	129.6	131.1
C3-C6-O5	101.0	102.7	105.3
C1–Ir–O5	83.0	89.9	90.0
X–Ir–O5	83.0	81.0	82.7

6C: X = CH, n = 0 6O: X = O, n = 1 6S: X = S, n = 1

Bond Length (Å) /	(0	(0)	65
Angle (°)	0C	00	05
Ir-C1	2.036	2.028	2.034
C1-C2	1.340	1.341	1.339
C2-C3	1.515	1.519	1.520
C3–C4	1.515	1.489	1.482
C4–X	1.340	1.255	1.667
Ir—X	2.356	2.088	2.399
Ir—O5	2.052	2.038	2.045
O5-C6	1.434	1.433	1.426
C3–C6	1.563	1.579	1.585
Ir-C1-C2	118.4	117.5	120.1
C1-C2-C3	119.8	120.3	121.7
C2-C3-C4	109.0	107.1	108.8
C3-C4-X	119.8	122.2	124.8
C4–X–Ir	118.4	117.9	101.2
C1–Ir–X	86.5	85.8	87.7
Ir-O5-C6	121.9	121.8	124.4
C3-C6-O5	111.2	110.8	111.5
C1-Ir-O5	87.6	89.9	90.6
X–Ir–O5	87.6	85.3	85.9

Cartesian Coordinates of Calculated Structures:

Geometry of complex: 3C

23			
Sto	ichiometry	= C5H14IrP3	
Н	-0.838610	0.471205	-2.436350
С	-1.187523	0.466486	-1.397894
С	-2.643063	0.631178	1.151141
Ir	0.141352	0.079413	0.004256
С	-2.569353	0.631729	-1.307149
С	-3.268035	0.690204	-0.097835
С	-1.269150	0.465876	1.324442
Η	-0.639229	-2.820341	-1.095796
H	-3.138572	0.769474	-2.219768
Η	-4.340779	0.836015	-0.129968
H	-0.983083	0.470124	2.381939
Η	-3.265940	0.768521	2.028078
H	1.167537	-3.115991	0.034329
Р	0.044882	-2.233584	0.000841
H	-0.703742	-2.820820	1.054225
Р	1.833647	0.406172	-1.672475
Р	1.730139	0.405391	1.779518
Η	2.762676	1.471534	-1.503028
Η	1.329859	0.769680	-2.951374
Η	2.785946	-0.567432	-2.113463
Η	2.667643	1.470812	1.666519
Η	2.654314	-0.568429	2.276332
Н	1.150626	0.768332	3.026098

Geometry of complex: 30

22			
Stoi	chiometry	= C4H13IrOP	3
н	1.155675	0.395500	3.088293
0	-1.153335	0.432837	-1.423041
С	-2.614369	0.708352	1.049711
Ir	0.140448	0.106568	0.063170
С	-2.455241	0.553478	-1.390568
С	-3.192563	0.709335	-0.232590
С	-1.282999	0.435087	1.365165
н	-0.694861	-2.703450	-1.030800
н	-2.932136	0.567588	-2.361349
н	-4.253250	0.871440	-0.332564
н	-1.081535	0.397584	2.433984
н	-3.279254	0.946382	1.870920
н	1.331822	-2.904118	-0.199049
Р	0.126671	-2.189690	-0.003197
н	-0.398836	-2.822066	1.143222
Р	1.778549	0.348755	-1.766158
Р	1.706774	0.307274	1.789012
н	2.714043	1.408840	-1.702327
н	1.090858	0.667766	-2.957982
н	2.635961	-0.686003	-2.220714
н	2.528398	1.457490	1.763079
Н	2.686427	-0.697974	1.980396

Geometry of complex: 3S

22			
Stoi	ichiometry	= C4H13IrP3	S1
Н	0.728697	0.871484	2.840339
S	-0.832485	1.453733	-1.299236
С	-2.691574	0.269595	1.101673
Ir	0.115507	-0.238322	-0.045047
С	-2.333960	2.017494	-0.638420
С	-3.050674	1.430127	0.365146
С	-1.516893	-0.453450	1.064177
Н	0.780462	-3.416691	-0.197043
Н	-2.712399	2.898967	-1.131325
Н	-3.997907	1.887811	0.613618
Н	-1.506874	-1.261585	1.795471
Н	-3.455938	-0.086357	1.781837
Н	2.140858	-2.532959	1.246034
Ρ	0.829260	-2.358277	0.739926
Н	0.060536	-2.899655	1.796589
Ρ	1.902155	-0.164566	-1.741294
Ρ	1.213298	1.005207	1.522627
Н	3.245926	0.116646	-1.386427
Н	1.691972	0.807732	-2.746879
Н	2.105532	-1.319301	-2.533946
Н	1.129653	2.396835	1.307929
Н	2.603102	0.810085	1.695886

Geometry of complex: 4C

33			
Sto	ichiometry	= C8H20IrOP	3
С	0.290834	1.467296	-1.227760
Ir	0.559063	0.003244	0.061799
0	-2.831133	-2.033174	-0.473398
С	-3.216117	-0.854675	-0.422035
С	-3.295123	0.000856	-1.653404
С	-0.006642	1.252445	1.475267
С	-0.227947	2.630062	1.425519
С	-0.190155	3.383470	0.248039
С	0.040393	2.823863	-1.012593
Р	2.857392	0.078117	0.320794
Р	0.075499	-1.796039	1.591790
Р	0.448763	-1.526587	-1.798176
С	-3.574043	-0.200736	0.881305
Н	0.261801	-0.903596	-3.062847
Н	3.329777	0.696009	1.508470
Н	-0.478797	3.151302	2.343102
Н	-0.386305	4.446794	0.310972
Н	0.432074	1.236413	-2.289649
Н	-0.015114	3.486182	-1.869813
Н	3.724465	-1.056798	0.324451
Н	3.564155	0.868275	-0.623462
Н	-0.983661	-2.674777	1.240665
Н	-0.391008	-1.374917	2.867522
Н	1.007606	-2.781242	2.045393
Н	-0.645833	-2.431229	-1.825888
Н	1.473860	-2.444590	-2.187600
Н	-4.243466	0.533378	-1.703279
Н	-3.164693	-0.603702	-2.545762
Н	-2.496571	0.743052	-1.601092

Η	-3.629396	-0.939433	1.675074
Н	-4.519633	0.333905	0.807557
Н	-2.795785	0.526496	1.119487
Н	-0.094282	0.856238	2.493208

Geometry of complex: 40

32

Sto	ichiometry	= C7H19IrO2	Р3
Н	0.733211	-1.450958	-3.000050
0	-0.014408	1.181015	1.379862
С	0.126814	2.506930	-1.300303
Ir	0.339386	-0.217139	-0.049168
С	0.066090	2.509902	1.188409
С	0.139679	3.157767	-0.003010
С	0.179376	1.170781	-1.528865
Η	2.609962	1.838689	0.321564
Н	0.048460	3.069030	2.115226
Η	0.177614	4.235143	0.024487
Η	0.152416	0.843014	-2.565127
Н	0.056207	3.170216	-2.154501
Η	3.411426	-0.127358	0.943709
Ρ	2.534565	0.465646	0.006221
Η	3.277149	0.365686	-1.188418
Ρ	0.418150	-1.695587	1.922258
Ρ	0.588837	-1.897066	-1.664564
Η	-0.538021	-2.731126	2.062113
Η	0.173403	-0.939025	3.091054
Н	1.586924	-2.401089	2.302463
Н	-0.520350	-2.765937	-1.778092
Η	1.653063	-2.825311	-1.577658
0	-1.731088	-0.710631	-0.155524
С	-2.830702	-0.119685	-0.016343
С	-4.079924	-0.910622	-0.205591
С	-2.940476	1.318908	0.340837
Η	-3.950250	1.685437	0.191801
Н	-2.232903	1.915817	-0.227494
Η	-2.670068	1.442432	1.389832
Η	-3.865689	-1.960385	-0.368345
Η	-4.629002	-0.514722	-1.060859
Η	-4.730719	-0.791718	0.660042

Geometry of complex: 4S

- -

32			
Sto	ichiometry	= C7H19IrOP	3S1
С	0.027080	0.914902	-1.685891
Ir	0.324518	-0.296804	-0.072395
0	-1.750098	-0.797825	0.085319
С	-2.853855	-0.200494	0.141698
С	-2.999336	1.275960	0.044873
S	0.112884	1.486498	1.507055
С	0.248917	3.027226	0.632338
С	0.220802	3.243234	-0.700999
С	0.045121	2.268128	-1.764653
Ρ	2.514036	0.374862	-0.247500
Ρ	0.581590	-1.692993	1.934063
Р	0.439199	-2.140642	-1.554838

С	-4.084447	-1.022957	0.329415
Η	0.379359	-1.828047	-2.934455
Η	2.632982	1.775610	-0.351734
Η	0.352053	3.863045	1.308093
Η	0.306694	4.273334	-1.019777
Η	-0.148148	0.411524	-2.635659
Η	-0.106994	2.707233	-2.744223
Η	3.382560	0.059200	0.821060
Η	3.248843	-0.085900	-1.363677
Η	-0.318487	-2.771653	2.111895
Η	0.402332	-0.992848	3.150876
Η	1.807347	-2.351778	2.200484
Η	-0.619223	-3.071752	-1.437620
Η	1.557218	-3.008198	-1.530136
Η	-3.992099	1.543394	-0.304918
Η	-2.236152	1.712465	-0.589084
Η	-2.864253	1.701261	1.041201
Η	-3.842002	-2.060648	0.526811
Η	-4.699141	-0.961047	-0.569525
Η	-4.684250	-0.617074	1.142852

Geometry of complex: 5C

33

Ctoichiomotry = COULOTROD2			
	- CONZULIOP	1 440017	
0.33/815	1.064590	1.448017	
Ir -0.598502	0.049423	-0.014556	
0 1.412519	-1.279238	0.021996	
C 2.622202	-0.873135	0.056793	
C 3.414600	-0.856690	-1.221735	
C 1.553816	1.680670	1.298167	
C 2.266147	1.792494	0.076184	
C 1.616327	1.707061	-1.182227	
C 0.409747	1.094959	-1.406198	
P -1.185788	-1.422957	-1.820219	
P -1.275207	-1.460699	1.727519	
P -2.285925	1.545210	-0.041176	
C 3.349210	-0.884301	1.373659	
Н 2.153715	2.108787	-2.036164	
Н 2.047297	2.063859	2.186435	
н -0.109008	1.104317	2.444149	
Н 3.251016	2.241935	0.105787	
Н 4.248660	-0.275289	1.354341	
Н 3.713222	-1.881633	-1.466568	
Н 4.311607	-0.248705	-1.144212	
Н 2.788179	-0.488312	-2.029339	
Н 3.635670	-1.914377	1.611374	
Н 2.682724	-0.532835	2.156346	
н -0.318869	-2.542548	-1.931207	
H -1.033442	-0.896021	-3.131060	
Н -2.425220	-2.105039	-2.008518	
H -3.647910	1.140560	-0.079752	
H -2.280801	2.466983	-1.116964	
н -2.335417	2.443972	1.052802	
H -0.414390	-2.582870	1.858198	
н -2.522192	-2.145952	1.838608	
Н -1.189353	-0.961836	3.055277	
н 0.013640	1.156098	-2.422500	

Geometry of complex: 50

32			
Stoi	Chiometry	= C7H19IrO2	23
Н	-2.192533	-0.118313	-2.762347
С	-1.648741	-0.456929	-1.887799
С	-1.494108	-2.148097	-0.077191
Н	-1.960277	-3.092271	0.173943
С	-0.273193	-1.846366	0.405047
0	-0.435622	0.005250	-1.795158
С	-2.275358	-1.262531	-0.942415
Ir	0.535719	-0.029665	0.016712
Р	1.165918	2.266193	-0.593142
Н	0.241743	-2.587823	1.010659
С	-2.500757	0.509803	0.438429
Н	-3.283065	-1.567245	-1.183242
Н	-4.108968	-0.699976	1.227355
Р	1.325170	0.038957	2.197103
Р	2.323989	-1.106564	-0.953154
0	-1.258598	0.893467	0.622149
С	-3.172809	-0.252951	1.546889
С	-3.373366	1.458261	-0.345574
Н	-3.695035	2.251902	0.332698
Н	-4.264804	0.970526	-0.728355
Н	-2.823187	1.920159	-1.158629
Н	-3.396495	0.466415	2.338981
Н	-2.519426	-1.013949	1.957314
Н	0.449950	3.259308	0.113736
Н	0.795017	2.566251	-1.923827
Н	2.473619	2.810373	-0.553796
Н	3.602983	-0.504616	-0.935809
Н	2.115274	-1.323628	-2.332113
Н	2.613975	-2.406923	-0.485505
Н	0.446024	0.740778	3.051216
Н	2.567290	0.640404	2.506453
Н	1.445136	-1.202867	2.862131

Geometry of complex: 5S

32				
Stoichiometry = C7H19IrOP3S1				
Η	-2.699071	-0.400588	-2.608848	
С	-1.985547	-0.629068	-1.829410	
С	-1.521498	-2.125804	0.115833	
Η	-1.956656	-3.072852	0.409749	
С	-0.256054	-1.832574	0.451391	
S	-0.396960	-0.057023	-2.146496	
С	-2.421228	-1.250216	-0.661835	
Ir	0.576927	-0.019799	0.058715	
Р	1.264204	2.264438	-0.489614	
Η	0.308666	-2.592139	0.988264	
С	-2.476746	0.472801	0.519078	
Н	-3.461505	-1.550084	-0.671929	
Н	-3.971671	-0.652082	1.615789	
Р	1.193703	0.102774	2.313378	
Р	2.464685	-1.115315	-0.701519	
0	-1.228341	0.917130	0.547744	
С	-3.010198	-0.173378	1.777490	
С	-3.444106	1.396025	-0.186928	

Н	-3.658461	2.232759	0.480210
Н	-4.385906	0.904046	-0.414806
Н	-3.005403	1.798103	-1.094288
Н	-3.153746	0.626489	2.507585
Н	-2.310790	-0.892256	2.188023
Η	0.211852	3.164857	-0.211542
Н	1.523404	2.562726	-1.848146
Н	2.357633	2.925018	0.124301
Н	3.743385	-0.616452	-0.359054
Н	2.568415	-1.217004	-2.106309
Н	2.577635	-2.468280	-0.309853
Н	0.260502	0.841273	3.074060
Н	2.415556	0.699325	2.705647
Н	1.244242	-1.118187	3.024682

Geometry of complex: 6C

33

Stoichiometry		= C8H20IrOP	3
С	-0.619212	1.722629	0.543293
Ir	-0.428771	-0.278997	0.220756
0	1.563521	0.057438	-0.138334
С	2.014117	1.162204	-0.934016
С	2.806716	0.597768	-2.116484
С	0.022925	2.564123	-0.278620
С	0.810522	2.015464	-1.450831
С	-0.104461	1.158852	-2.301968
С	-0.763270	0.133197	-1.745200
Ρ	0.185165	-2.514256	-0.464247
Ρ	0.371346	-0.459182	2.494477
Ρ	-2.705046	-0.528310	0.537221
С	2.935951	2.022551	-0.065079
Н	-0.202708	1.401197	-3.353575
Н	0.000018	3.637732	-0.133362
Н	-1.194392	2.119824	1.380022
Н	1.215590	2.834341	-2.045064
Н	3.353271	2.860011	-0.628003
Н	3.628991	-0.009506	-1.738960
Н	3.220184	1.393155	-2.740008
Н	2.167067	-0.033398	-2.729407
Н	3.757566	1.408211	0.302316
Н	2.388844	2.411580	0.790795
Н	1.582605	-2.550543	-0.688414
Н	-0.280556	-2.977764	-1.723543
Н	0.018044	-3.724976	0.268255
Н	-3.269843	-1.584076	1.306005
Н	-3.494983	-0.665942	-0.634815
Н	-3.383298	0.565189	1.137928
Н	1.782383	-0.343750	2.487528
Н	0.214961	-1.559034	3.386778
Н	0.041346	0.582070	3.402476
Н	-1.429601	-0.475565	-2.356857

Geometry of complex: 60

32			
Stoi	Chiometry	= C7H19IrO2H	23
Н	-0.304165	1.298046	-3.338569
С	-0.133179	1.122412	-2.280128
С	-0.025886	2.559722	-0.336969
Н	-0.096156	3.635989	-0.270354
С	-0.609632	1.739050	0.547876
0	-0.753950	0.161809	-1.762942
С	0.782003	1.991523	-1.490845
Ir	-0.402058	-0.256914	0.252630
Ρ	0.182584	-2.550946	-0.392915
Н	-1.166675	2.163272	1.378137
С	2.009227	1.138216	-0.981219
Н	1.158246	2.784643	-2.129042
Н	3.308300	2.863793	-0.695295
Р	0.333362	-0.464613	2.427803
Ρ	-2.699496	-0.573052	0.616974
0	1.564101	0.019338	-0.204954
С	2.911221	2.023032	-0.126816
С	2.782136	0.590748	-2.183905
Н	3.626646	0.007205	-1.826000
Н	3.164259	1.391535	-2.816638
Η	2.161638	-0.071781	-2.788221
Н	3.747855	1.425015	0.228104
Η	2.374010	2.406348	0.736770
Η	1.500102	-2.906028	-0.028298
Η	0.248277	-2.710670	-1.795738
Н	-0.525326	-3.725402	-0.036024
Η	-3.173093	-1.786775	1.168017
Η	-3.474111	-0.492616	-0.563080
Η	-3.362013	0.367658	1.439120
Н	1.743007	-0.410580	2.449592
Н	0.044923	-1.623343	3.185152
Н	-0.040581	0.557872	3.327101

Geometry of complex: 6S

32				
Stoichiometry = C7H19IrOP3S1				
Н	0.050196	1.699456	-3.399942	
С	0.050772	1.378634	-2.366078	
С	0.035502	2.575558	-0.238455	
Н	-0.046784	3.647531	-0.124088	
С	-0.599210	1.721853	0.574033	
S	-0.926009	0.075669	-2.009875	
С	0.905344	2.088137	-1.384882	
Ir	-0.399908	-0.283937	0.302892	
Р	0.212219	-2.600983	-0.201392	
Η	-1.200143	2.126360	1.384521	
С	2.069049	1.142082	-0.872461	
Н	1.376087	2.933360	-1.879546	
Н	3.370603	2.803693	-0.326307	
Ρ	0.474631	-0.385859	2.464255	
Ρ	-2.650604	-0.608531	0.878306	
0	1.551952	-0.035366	-0.255530	
С	2.918598	1.922730	0.128672	
С	2.924219	0.696815	-2.060409	
Н	3.732908	0.066252	-1.699027	

Н	3.362072	1.547493	-2.582369
Н	2.339860	0.108540	-2.766635
Н	3.718126	1.274795	0.482518
Н	2.325910	2.240752	0.982910
Н	1.567713	-2.848227	0.108315
Н	0.193202	-2.947294	-1.571993
Н	-0.412662	-3.744726	0.354910
Н	-3.008043	-1.717361	1.681790
Н	-3.560201	-0.762364	-0.193990
Н	-3.265970	0.445590	1.593594
Н	1.883715	-0.409061	2.399802
Н	0.181866	-1.469649	3.325949
Н	0.215627	0.715958	3.309120