This journal is © The Royal Society of Chemistry 2003

Electronic Supplementary Information (ESI) service

A novel route to the fluorinated diimines: carbon monoxide-promoted reductive homocoupling of fluorinated imidoyl iodides in the presence of a palladium catalyst

Hideki Amii, Mitsuhiro Kohda, Motoharu Seo and Kenji Uneyama*

Synthesis of the fluorinated diimine 2a (0.5 mmol scale).

A two-necked flask attached a CO (1 atm) balloon was charged Pd₂(dba)₃•CHCl₃ (0.025 g, 0.025 mmol) and K₂CO₃ (0.138 g, 1 mmol), and toluene(2 mL). Then 0.165 g (0.50 mmol) of trifluoroacetimidoyl iodide **3a** in 2 mL of toluene was added to the catalyst mixture. Subsequently, 0.05 mL of DMF was added. The reaction vessel was wrapped with aluminum foil to minimize exposure to the light. The reaction mixture was stirred at 70 °C for 7 h. The reaction was monitored by TLC. When the imidoyl iodide **3a** was consumed, the resulting suspension was filtered through a short celite column (AcOEt). After evaporation of solvent, the residue was purified by silica gel column chromatography (hexane : ether (9:1) elute) to give yellow solid of **2a** (0.064 g, 0.16 mmol, 64%): Mp 121 °C; IR(KBr) 1598, 1506 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 6.78 (s, 8 H), 3.80 (s, 6 H); ¹⁹F NMR (CDCl₃, 188 MHz, C₆F₆ as an internal standard) δ 93.9 (s, 6 F); MS *m/z* 404 (M⁺ 8), 389 (14), 202 (100), 107 (43), 77 (73). Anal. Calcd for C₁₈H₁₄F₆N₂O₂: C, 53.47; H, 3.49; N, 6.93. Found: C, 53.28; H, 3.34; N, 7.23.

Compound **2b**: yellow solid; Mp 103 °C; IR (KBr) 1604, 1506 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.02 (d, J = 8, 4 H), 6.50 (d, J = 8, 4 H), 2.33 (s, 6 H); ¹⁹F NMR (188 MHz, CDCl₃) δ 93.9 (s, 6 F); MS m/z 372 (M⁺ 10), 357 (16), 186 (59), 91 (100), 65 (44). Anal. Calcd for C₁₈H₁₄F₆N₂: C, 58.07; H, 3.79; N, 7.52. Found: C, 58.42; H, 3.89; N, 7.45.

Compound **2c**: yellow oil; IR (KBr) 1596, 1488 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.2-7.1 (m, 6 H), 6.5-6.4 (m, 4 H); ¹⁹F NMR (188 MHz, CDCl₃) δ 93.9 (s, 6 F); MS *m/z* 344 (M⁺ 100), 172 (95), 77 (93). Anal. Calcd for C₁₆H₁₀F₆N₂: C, 55.82; H, 2.93; N, 8.14. Found: C, 55.48; H, 2.76; N, 8.35.

Compound **2d**: yellow solid; Mp 121 °C; IR (KBr) 1486 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.22 (d, J = 9, 4 H), 6.44 (d, J = 9, 4 H); ¹⁹F NMR (188 MHz, CDCl₃) δ 93.8 (s, 6 F); MS m/z 412 (M⁺ 28), 377 (20), 206 (100), 111 (90), 75 (46). Anal. Calcd for C₁₆H₈Cl₂F₆N₂: C, 46.51; H, 1.95; N, 6.78. Found: C, 46.70; H, 1.90; N, 6.71.

Compound **2e**: red oil; IR (neat) 1680, 1596 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 6.9-7.0 (brs, 6 H), 2.10 (brs, 6H), 1.56 (brs, 6 H); ¹⁹F NMR (188 MHz, CDCl₃) δ 95.7 (s, 3 F), 93.5 (s, 3 F); MS *m/z* 400 (M⁺ 2), 385 (43), 200 (100), 131 (65), 105 (90), 77 (76). Anal. Calcd for C₂₀H₁₈F₆N₂: C, 60.00; H, 4.53; N, 7.00. Found: C, 60.01; H, 4.87; N, 6.79.

Compound **2f**: red oil; IR (neat) 1684 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.2-6.9 (brs, 6 H), 2.9-2.6 (brs, 4 H), 1.3-0.8 (brs, 24 H); ¹⁹F NMR (188 MHz, CDCl₃) δ 98-97 (brs, 3 F), 95-94 (brs, 3 F); MS *m*/*z* 512 (M⁺ 1), 469 (15), 256 (100), 214 (33). Anal. Calcd for C₂₈H₃₄F₆N₂: C, 65.61; H, 6.69; N, 5.47. Found: C, 65.70; H, 7.08; N, 5.73.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2003

Compound **2g**: yellow solid; Mp 115 °C; IR (KBr) 1592, 1508 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.4-7.1 (m, 8 H), 7.0-6.9 (m, 2 H), 6.8-6.6 (m, 4 H); ¹⁹F NMR (188 MHz, CDCl₃) δ 94.1 (s, 6 F); MS *m/z* 444 (M⁺ 75), 375 (66), 222 (57), 202 (94), 127 (100). Anal. Calcd for C₂₄H₁₄F₆N₂: C, 64.87; H, 3.18; N, 6.30. Found: C, 64.61; H, 3.11; N, 6.27.

Compound **2h**: yellow solid; Mp 70 °C; IR (KBr) 1596, 1506 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 7.05 (d, J = 9, 4 H), 6.85 (d, J = 9, 4 H), 3.83 (s, 6 H); ¹⁹F NMR (188 MHz, CDCl₃) δ 81.7 (t, J = 21, 6 F), 60-58 (m, 2 F), 49-46 (m, 2 F), 37.7 (t, J = 6, 4 F); MS *m*/*z* 604 (M⁺ 2), 302 (100), 92 (38), 77 (67). Anal. Calcd for C₂₂H₁₄F₁₄N₂O₂: C, 43.72; H, 2.33; N, 4.64. Found: C, 43.55; H, 2.48; N, 4.27.

Compound **2i**: as a mixture of E/E, Z/Z or E/Z diastereomers. A diastereomer ratio of 9:2 was determined by comparing the intensities of the indicated ¹⁹H NMR peaks (* =major isomer; ** = minor isomer); $[\alpha]^{23}{}_{\rm D}$ -4.37 (*c* 0.79, CHCl₃); IR (neat) 1660 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 6.8-7.4 (m, 10 H), **4.57 (q, J = 6, 2 H), *4.19 (q, J = 6, 2 H), **1.63 (d, J = 6, 6 H), *1.39 (d, J = 6, 6 H); ¹⁹F NMR (188 MHz, CDCl₃) δ **92.0 (s, 6 F), *91.9 (s, 6 F); MS *m*/*z* 400 (M⁺ 1), 295 (15), 281 (12), 105 (100). Anal. Calcd for C₂₀H₁₈F₆N₂: C, 60.00; H, 4.53; N, 7.00. Found: C, 60.28; H, 4.32; N, 6.85.

Synthesis of the fluorinated diimine 2a (10 mmol scale).

A two-necked flask attached a CO (1 atm) balloon was charged $Pd_2(dba)_3$ •CHCl₃ (0.522 g, 0.506 mmol) and K_2CO_3 (2.81 g, 20.3 mmol), and toluene(10 mL). Then 3.31 g (10.1 mmol) of trifluoroacetimidoyl iodide **3a** in 10 mL of toluene was added to the catalyst mixture. Subsequently, 1.0 mL of DMF was added. The reaction vessel was wrapped with aluminum foil to minimize exposure to the light. The reaction mixture was stirred at 70 °C overnight. When the imidoyl iodide **3a** was consumed, the resulting suspension was filtered through a short celite column (AcOEt). After evaporation of solvent, the residue was purified by silica gel column chromatography (hexane : ether (9:1) elute) to give yellow solid of **2a** (1.29 g, 3.19 mmol, 63%).