# Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2003 data_global _journal_coden_Cambridge 182 _publ_contact_author_name 'Prof James D. Wuest' _publ_contact_author_address ; Departement de Chimie Universite de Montreal Montreal Quebec H3C 3J7 CANADA ; _publ_contact_author_email WUEST@CHIMIE.UMONTREAL.CA _publ_requested_journal 'Chemical Communication' _publ_requested_category ? _publ_section_title ; Excavations in molecular crystals ; loop_ _publ_author_name _publ_author_address 'Le Fur, Erwan' ; Universite de Montreal Departement de Chimie Montreal, Quebec Canada, H3C 3J7 ; 'Demers, Eric' ; Universite de Montreal Departement de Chimie Montreal, Quebec Canada, H3C 3J7 ; 'Maris, Thierry' ; Universite de Montreal Departement de Chimie Montreal, Quebec Canada, H3C 3J7 ; 'Wuest,James D.' ; Universite de Montreal Departement de Chimie Montreal, Quebec Canada, H3C 3J7 ; _publ_section_abstract ; Single crystals built from porous molecular networks can be excavated by agents that penetrate the crystals, cleave fragments from the network, and thereby increase the volume available for guests, all without substantial loss of crystallinity. ; _publ_section_exptl_refinement ; The structure was solved by direct method with ShelxS-97. All non-H atoms were refined by full-matrix least-squares with anisotropic displacement parameters while hydrogen atoms were placed in idealized position. ; _publ_section_references ; SAINT Release 6.06 (1999). Integration Software for Single Crystal Data. Bruker AXS Inc., Madison, WI 53719-1173. Sheldrick, G. M. (1996). SADABS, Bruker Area Detector Absorption Corrections. Bruker AXS Inc., Madison, WI 53719-1173. Sheldrick, G. M. (1997). SHELXS97. Program for Crystal Structure solution. University of Gottingen, Germany. Sheldrick, G. M. (1997). SHELXL97. Program for crystal structure refinement. University of Gottingen, Germany. SHELXTL (1997). Release 5.10; The Complete Software Package for Single Crystal Structure Determination. Bruker AXS Inc., Madison, WI 53719-1173. SMART (1999). Release 5.059; Bruker Molecular Analysis Research Tool. Bruker AXS Inc., Madison, WI 53719-1173. Spek, A. L. (1994). Am. Crystallogr. Assoc.-Abstracts, 22, 66. Spek, A. L. (2000). PLATON, Molecular Geometry Program, 2000 version. University of Utrecht, Utrecht, Holland. P. v.d. Sluis & A.L. Spek, (1990), Acta Cryst. A46, 194. XPREP (1997). Release 5.10. X-ray data Preparation and Reciprocal space Exploration Program. Bruker AXS Inc., Madison, WI 53719-1173. ; # ======================================================== # STRUCTURAL DATA # ======================================================== data_jiw249 _database_code_depnum_ccdc_archive 'CCDC 222274' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C53 H60 N24 O8' _chemical_formula_sum 'C53 H60 N24 O8' _chemical_formula_weight 1161.25 _chemical_compound_source 'Synthesized by the authors. See text' loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0311 0.0180 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Tetragonal _symmetry_space_group_name_H-M I41/a _symmetry_space_group_name_hall '-I 4ad' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-y+3/4, x+1/4, z+1/4' 'y+3/4, -x+3/4, z+3/4' 'x+1/2, y+1/2, z+1/2' '-x+1, -y+1/2, z+1' '-y+5/4, x+3/4, z+3/4' 'y+5/4, -x+5/4, z+5/4' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'y-3/4, -x-1/4, -z-1/4' '-y-3/4, x-3/4, -z-3/4' '-x+1/2, -y+1/2, -z+1/2' 'x, y+1/2, -z' 'y-1/4, -x+1/4, -z+1/4' '-y-1/4, x-1/4, -z-1/4' _cell_length_a 25.6644(3) _cell_length_b 25.6644(3) _cell_length_c 12.2028(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 8037.5(2) _cell_formula_units_Z 4 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 7775 _cell_measurement_theta_min 3.44 _cell_measurement_theta_max 71.79 _exptl_crystal_description block _exptl_crystal_colour Colourless _exptl_crystal_size_max 0.41 _exptl_crystal_size_mid 0.14 _exptl_crystal_size_min 0.14 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 0.960 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 2440 _exptl_absorpt_coefficient_mu 0.567 _exptl_absorpt_correction_Type multi-scan _exptl_absorpt_correction_T_min 0.3300 _exptl_absorpt_correction_T_max 1.0000 _exptl_absorpt_process_details 'Sadabs (Sheldrick,1996)' _exptl_special_details ; X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a glass fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2K Charged-Coupled Device (CCD) Area Detector using the program SMART and normal focus sealed tube source graphite monochromated Cu-K\a radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 x 512 pixel mode, utilizing 4 x 4 pixel binning. The initial unit cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). One complete sphere of data was collected, to better than 0.8\%A resolution. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis. ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 1.54178 _diffrn_radiation_type CuK\a _diffrn_radiation_source 'Sealed Tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS Smart 2K/Platform' _diffrn_measurement_method \w _diffrn_detector_area_resol_mean 5.5 _diffrn_standards_number 264 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0.04 _diffrn_reflns_number 32725 _diffrn_reflns_av_R_equivalents 0.055 _diffrn_reflns_av_sigmaI/netI 0.0810 _diffrn_reflns_limit_h_min -31 _diffrn_reflns_limit_h_max 30 _diffrn_reflns_limit_k_min -31 _diffrn_reflns_limit_k_max 31 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 14 _diffrn_reflns_theta_min 3.44 _diffrn_reflns_theta_max 72.95 _diffrn_measured_fraction_theta_max 0.991 _diffrn_reflns_theta_full 72.95 _diffrn_measured_fraction_theta_full 0.991 _reflns_number_total 3976 _reflns_number_gt 2230 _reflns_threshold_expression >2\s(I) _computing_data_collection 'SMART (Bruker, 1999)' _computing_cell_refinement 'SMART (Bruker, 1999)' _computing_data_reduction 'SAINT (Bruker, 1999)' _computing_structure_solution 'SHELXS97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL97 (Sheldrick, 1997)' _computing_molecular_graphics 'XP (Bruker, 1999)' _computing_publication_material 'UdMX (local program)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The host network can be easily found and refined but no resolved solvent (DMSO/acetone) molecules could be found within the cavities. Most solvent molecules were disordered to such extent that few significant difference peaks were found by Fourier difference. Refining the structure with isolated solvent peaks for modeling the disordered solvent gave a residual R1 close to 20% at this point even though what appeared to be a correct solution was found. The data were treated with the Squeeze option of the program Platon to remove as much of the effects of the solvent disorder as possible. Platon found a potential solvent void of 3166 cubic angstrom in the unit-cell volume of 8037.5 cubic angstrom, or 39%. The Squeeze option found 760 electrons of diffuse scattering, values giving 18 DMSO solvent molecules per unit-cell or 4.5 per molecules. This figures is close to the 3.5 DMSO per molecules found by NMR, but water maybe also included in the cavities in the unit cell (see text). Note that the use of the Squeeze option from Platon has some consequences in the values of the standard uncertainties of the geometric data. Ref : P. v.d. Sluis & A.L. Spek, Acta Cryst. A46, (1990), 194 ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0995P)^2^] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 3976 _refine_ls_number_parameters 193 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.1568 _refine_ls_R_factor_gt 0.0824 _refine_ls_wR_factor_ref 0.2306 _refine_ls_wR_factor_gt 0.1885 _refine_ls_goodness_of_fit_ref 1.097 _refine_ls_restrained_S_all 1.097 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 _refine_diff_density_max 0.202 _refine_diff_density_min -0.235 _refine_diff_density_rms 0.045 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group O1 O 0.85878(12) 0.22014(12) 0.1352(3) 0.0892(10) Uani 1 1 d . . . O2 O 0.82823(13) 0.26353(13) 0.2815(3) 0.0971(11) Uani 1 1 d . . . N1 N 0.87681(10) 0.37814(10) -0.0836(2) 0.0501(8) Uani 1 1 d . . . H1 H 0.8864 0.4102 -0.0849 0.060 Uiso 1 1 calc R . . N2 N 0.81835(10) 0.40947(10) 0.0382(2) 0.0490(8) Uani 1 1 d . . . N3 N 0.75206(10) 0.35411(10) 0.1108(2) 0.0487(7) Uani 1 1 d . . . N4 N 0.81804(10) 0.31966(10) -0.0072(2) 0.0475(7) Uani 1 1 d . . . N5 N 0.75695(12) 0.44037(11) 0.1577(3) 0.0775(11) Uani 1 1 d . . . H5A H 0.7298 0.4364 0.1982 0.093 Uiso 1 1 calc R . . H5B H 0.7717 0.4704 0.1532 0.093 Uiso 1 1 calc R . . N6 N 0.75452(11) 0.26760(10) 0.0695(3) 0.0597(9) Uani 1 1 d . . . H6 H 0.7245 0.2658 0.1006 0.072 Uiso 1 1 calc R . . C1 C 1.0000 0.2500 -0.3750 0.0337(13) Uani 1 4 d S . . C2 C 0.96713(11) 0.28536(11) -0.2986(3) 0.0369(7) Uani 1 1 d . . . C3 C 0.96571(12) 0.33904(11) -0.3033(3) 0.0443(8) Uani 1 1 d . . . H3 H 0.9856 0.3560 -0.3562 0.053 Uiso 1 1 calc R . . C4 C 0.93572(12) 0.36869(12) -0.2323(3) 0.0482(9) Uani 1 1 d . . . H4 H 0.9359 0.4048 -0.2383 0.058 Uiso 1 1 calc R . . C5 C 0.90557(11) 0.34509(11) -0.1525(3) 0.0403(8) Uani 1 1 d . . . C6 C 0.90785(12) 0.29133(12) -0.1431(3) 0.0461(8) Uani 1 1 d . . . H6' H 0.8891 0.2746 -0.0882 0.055 Uiso 1 1 calc R . . C7 C 0.93794(12) 0.26243(12) -0.2149(3) 0.0429(8) Uani 1 1 d . . . H7 H 0.9387 0.2264 -0.2071 0.051 Uiso 1 1 calc R . . C8 C 0.83618(12) 0.36778(12) -0.0152(3) 0.0432(8) Uani 1 1 d . . . C9 C 0.77626(12) 0.39976(12) 0.1013(3) 0.0492(9) Uani 1 1 d . . . C10 C 0.77580(12) 0.31517(12) 0.0576(3) 0.0471(9) Uani 1 1 d . . . C11 C 0.77811(16) 0.21943(13) 0.0343(4) 0.0657(11) Uani 1 1 d . . . H11A H 0.8003 0.2265 -0.0284 0.079 Uiso 1 1 calc R . . H11B H 0.7508 0.1959 0.0102 0.079 Uiso 1 1 calc R . . C12 C 0.80954(17) 0.19286(16) 0.1193(4) 0.0849(14) Uani 1 1 d . . . H12A H 0.7903 0.1921 0.1877 0.102 Uiso 1 1 calc R . . H12B H 0.8163 0.1572 0.0971 0.102 Uiso 1 1 calc R . . C13 C 0.86285(19) 0.25534(19) 0.2188(5) 0.0796(13) Uani 1 1 d . . . C14 C 0.91451(18) 0.2804(2) 0.2188(5) 0.1083(18) Uani 1 1 d . . . H14A H 0.9138 0.3104 0.2658 0.162 Uiso 1 1 calc R . . H14B H 0.9233 0.2909 0.1457 0.162 Uiso 1 1 calc R . . H14C H 0.9401 0.2561 0.2451 0.162 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 O1 0.073(2) 0.079(2) 0.116(3) 0.008(2) 0.0097(19) 0.0080(16) O2 0.075(2) 0.118(3) 0.099(3) 0.005(2) 0.0226(19) -0.009(2) N1 0.0480(16) 0.0314(14) 0.071(2) -0.0068(14) 0.0189(14) -0.0038(12) N2 0.0422(15) 0.0355(15) 0.069(2) -0.0039(14) 0.0156(14) -0.0004(12) N3 0.0381(15) 0.0407(15) 0.067(2) -0.0049(14) 0.0053(13) -0.0013(12) N4 0.0394(15) 0.0378(15) 0.065(2) 0.0007(13) 0.0122(13) 0.0004(11) N5 0.070(2) 0.0442(17) 0.119(3) -0.0192(18) 0.045(2) -0.0076(15) N6 0.0493(17) 0.0372(15) 0.093(3) 0.0022(15) 0.0116(17) -0.0048(13) C1 0.0312(18) 0.0312(18) 0.039(4) 0.000 0.000 0.000 C2 0.0298(15) 0.0310(15) 0.050(2) -0.0013(14) -0.0001(14) 0.0020(12) C3 0.0423(18) 0.0340(16) 0.057(2) 0.0016(15) 0.0109(16) -0.0050(13) C4 0.0450(19) 0.0299(16) 0.070(3) -0.0001(16) 0.0129(17) -0.0032(13) C5 0.0342(16) 0.0335(16) 0.053(2) -0.0051(15) 0.0025(15) 0.0020(13) C6 0.0455(19) 0.0416(18) 0.051(2) 0.0035(15) 0.0116(16) -0.0030(14) C7 0.0430(18) 0.0297(15) 0.056(2) 0.0024(14) 0.0085(16) 0.0017(13) C8 0.0338(16) 0.0354(17) 0.060(2) 0.0002(15) 0.0029(15) 0.0007(13) C9 0.0409(18) 0.0405(18) 0.066(3) -0.0078(17) 0.0101(17) 0.0008(14) C10 0.0369(17) 0.0384(18) 0.066(3) 0.0006(16) 0.0005(17) 0.0011(13) C11 0.069(3) 0.039(2) 0.090(3) -0.004(2) 0.007(2) -0.0066(18) C12 0.076(3) 0.050(2) 0.128(4) 0.005(3) 0.013(3) 0.000(2) C13 0.069(3) 0.072(3) 0.098(4) 0.015(3) 0.004(3) 0.001(2) C14 0.070(3) 0.122(5) 0.133(5) 0.004(4) 0.001(3) -0.019(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_site_symmetry_1 _geom_bond_site_symmetry_2 _geom_bond_distance _geom_bond_publ_flag O1 C13 . . 1.367(6) Y O1 C12 . . 1.458(5) Y O2 C13 . . 1.192(5) Y N1 C8 . . 1.362(4) Y N1 C5 . . 1.404(4) Y N1 H1 . . 0.86 ? N2 C8 . . 1.334(4) Y N2 C9 . . 1.349(4) Y N3 C9 . . 1.331(4) Y N3 C10 . . 1.338(4) Y N4 C8 . . 1.323(4) Y N4 C10 . . 1.347(4) Y N5 C9 . . 1.343(4) Y N5 H5a . . 0.86 ? N5 H5b . . 0.86 ? N6 C10 . . 1.345(4) Y N6 C11 . . 1.442(4) Y N6 H6 . . 0.86 ? C1 C2 . 12_755 1.551(3) Y C1 C2 . 15_664 1.551(3) Y C1 C2 . 6_654 1.551(3) Y C1 C2 . . 1.551(3) Y C2 C3 . . 1.379(4) Y C2 C7 . . 1.397(4) Y C3 C4 . . 1.387(4) Y C3 H3 . . 0.93 ? C4 C5 . . 1.383(4) Y C4 H4 . . 0.93 ? C5 C6 . . 1.386(4) Y C6 C7 . . 1.384(4) Y C6 H6 . . 0.93 ? C7 H7 . . 0.93 ? C11 C12 . . 1.480(6) Y C11 H11a . . 0.97 ? C11 H11b . . 0.97 ? C12 H12a . . 0.97 ? C12 H12b . . 0.97 ? C13 C14 . . 1.473(6) Y C14 H14a . . 0.96 ? C14 H14b . . 0.96 ? C14 H14c . . 0.96 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_2 _geom_angle_site_symmetry_3 _geom_angle _geom_angle_publ_flag C13 O1 C12 . . . 118.9(4) Y C8 N1 C5 . . . 130.6(3) Y C8 N1 H1 . . . 114.7 ? C5 N1 H1 . . . 114.7 ? C8 N2 C9 . . . 113.9(3) Y C9 N3 C10 . . . 113.7(3) Y C8 N4 C10 . . . 114.0(3) Y C9 N5 H5A . . . 120 ? C9 N5 H5B . . . 120 ? H5A N5 H5B . . . 120 ? C10 N6 C11 . . . 125.1(3) Y C10 N6 H6 . . . 117.4 ? C11 N6 H6 . . . 117.4 ? C2 C1 C2 12_755 . 15_664 106.1(2) Y C2 C1 C2 12_755 . 6_654 111.20(12) Y C2 C1 C2 15_664 . 6_654 111.20(12) Y C2 C1 C2 12_755 . . 111.20(12) Y C2 C1 C2 15_664 . . 111.20(12) Y C2 C1 C2 6_654 . . 106.1(2) Y C3 C2 C7 . . . 116.0(3) Y C3 C2 C1 . . . 125.0(3) Y C7 C2 C1 . . . 119.0(2) Y C2 C3 C4 . . . 122.4(3) Y C2 C3 H3 . . . 118.8 ? C4 C3 H3 . . . 118.8 ? C5 C4 C3 . . . 120.7(3) Y C5 C4 H4 . . . 119.7 ? C3 C4 H4 . . . 119.7 ? C4 C5 C6 . . . 118.1(3) Y C4 C5 N1 . . . 116.8(3) Y C6 C5 N1 . . . 125.1(3) Y C7 C6 C5 . . . 120.3(3) Y C7 C6 H6 . . . 119.8 ? C5 C6 H6 . . . 119.8 ? C6 C7 C2 . . . 122.5(3) Y C6 C7 H7 . . . 118.8 ? C2 C7 H7 . . . 118.8 ? N4 C8 N2 . . . 126.3(3) Y N4 C8 N1 . . . 119.8(3) Y N2 C8 N1 . . . 113.9(3) Y N3 C9 N5 . . . 117.8(3) Y N3 C9 N2 . . . 125.9(3) Y N5 C9 N2 . . . 116.4(3) Y N3 C10 N6 . . . 116.1(3) Y N3 C10 N4 . . . 126.0(3) Y N6 C10 N4 . . . 117.9(3) Y N6 C11 C12 . . . 114.5(4) Y N6 C11 H11A . . . 108.6 ? C12 C11 H11A . . . 108.6 ? N6 C11 H11B . . . 108.6 ? C12 C11 H11B . . . 108.6 ? H11A C11 H11B . . . 107.6 ? O1 C12 C11 . . . 110.1(3) Y O1 C12 H12A . . . 109.6 ? C11 C12 H12A . . . 109.6 ? O1 C12 H12B . . . 109.6 ? C11 C12 H12B . . . 109.6 ? H12A C12 H12B . . . 108.1 ? O2 C13 O1 . . . 122.6(5) Y O2 C13 C14 . . . 126.4(6) Y O1 C13 C14 . . . 110.9(5) Y C13 C14 H14A . . . 109.5 ? C13 C14 H14B . . . 109.5 ? H14A C14 H14B . . . 109.5 ? C13 C14 H14C . . . 109.5 ? H14A C14 H14C . . . 109.5 ? H14B C14 H14C . . . 109.5 ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion _geom_torsion_publ_flag C2 C1 C2 C3 12_755 . . . -112.7(4) Y C2 C1 C2 C3 15_664 . . . 5.2(3) Y C2 C1 C2 C3 6_654 . . . 126.3(3) Y C2 C1 C2 C7 12_755 . . . 70.00(18) Y C2 C1 C2 C7 15_664 . . . -172.0(3) Y C2 C1 C2 C7 6_654 . . . -51.0(2) Y C7 C2 C3 C4 . . . . -2.3(5) Y C1 C2 C3 C4 . . . . -179.6(3) Y C2 C3 C4 C5 . . . . 0.0(5) Y C3 C4 C5 C6 . . . . 2.5(5) Y C3 C4 C5 N1 . . . . 179.5(3) Y C8 N1 C5 C4 . . . . 164.2(3) Y C8 N1 C5 C6 . . . . -19.1(5) Y C4 C5 C6 C7 . . . . -2.6(5) Y N1 C5 C6 C7 . . . . -179.3(3) Y C5 C6 C7 C2 . . . . 0.3(5) Y C3 C2 C7 C6 . . . . 2.2(5) Y C1 C2 C7 C6 . . . . 179.7(3) Y C10 N4 C8 N2 . . . . 3.8(5) Y C10 N4 C8 N1 . . . . -175.9(3) Y C9 N2 C8 N4 . . . . -3.3(5) Y C9 N2 C8 N1 . . . . 176.5(3) Y C5 N1 C8 N4 . . . . -0.2(5) Y C5 N1 C8 N2 . . . . 180.0(3) Y C10 N3 C9 N5 . . . . -175.9(3) Y C10 N3 C9 N2 . . . . 5.2(5) Y C8 N2 C9 N3 . . . . -1.7(5) Y C8 N2 C9 N5 . . . . 179.5(3) Y C9 N3 C10 N6 . . . . 176.5(3) Y C9 N3 C10 N4 . . . . -4.6(5) Y C11 N6 C10 N3 . . . . -169.7(3) Y C11 N6 C10 N4 . . . . 11.3(6) Y C8 N4 C10 N3 . . . . 0.5(5) Y C8 N4 C10 N6 . . . . 179.4(3) Y C10 N6 C11 C12 . . . . 92.6(5) Y C13 O1 C12 C11 . . . . 96.6(5) Y N6 C11 C12 O1 . . . . -74.4(5) Y C12 O1 C13 O2 . . . . 2.4(7) Y C12 O1 C13 C14 . . . . -177.6(4) Y loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A N1 H1 N3 0.86 2.46 3.288(4) 161.9 7_544 N5 H5A N2 0.86 2.12 2.975(4) 174.6 8_454 N6 H6 O2 0.86 2.11 2.907(4) 153.3 13_655 # =========================================================================== data_jiw489 _database_code_depnum_ccdc_archive 'CCDC 222275' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C50.60 H60.40 N24 O6.80' _chemical_formula_weight 1113.63 _chemical_compound_source 'Synthesized by the authors. See text' loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0311 0.0180 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Tetragonal _symmetry_space_group_name_H-M I41/a _symmetry_space_group_name_hall '-I 4ad' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-y+3/4, x+1/4, z+1/4' 'y+3/4, -x+3/4, z+3/4' 'x+1/2, y+1/2, z+1/2' '-x+1, -y+1/2, z+1' '-y+5/4, x+3/4, z+3/4' 'y+5/4, -x+5/4, z+5/4' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'y-3/4, -x-1/4, -z-1/4' '-y-3/4, x-3/4, -z-3/4' '-x+1/2, -y+1/2, -z+1/2' 'x, y+1/2, -z' 'y-1/4, -x+1/4, -z+1/4' '-y-1/4, x-1/4, -z-1/4' _cell_length_a 25.6490(6) _cell_length_b 25.6490(6) _cell_length_c 11.9420(4) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 7856.3(4) _cell_formula_units_Z 4 _cell_measurement_temperature 223(2) _cell_measurement_reflns_used 3567 _cell_measurement_theta_min 3.49 _cell_measurement_theta_max 38.61 _exptl_crystal_description block _exptl_crystal_colour Colourless _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.15 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 0.942 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 2346 _exptl_absorpt_coefficient_mu 0.550 _exptl_absorpt_correction_Type multi-scan _exptl_absorpt_correction_T_min 0.6400 _exptl_absorpt_correction_T_max 1.0000 _exptl_absorpt_process_details 'Sadabs (Sheldrick,1996)' _exptl_special_details ; X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2K Charged-Coupled Device (CCD) Area Detector using the program SMART and normal focus sealed tube source graphite monochromated Cu-K\a radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 x 512 pixel mode, utilizing 4 x 4 pixel binning. The initial unit cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). This sample despite the specimen size did not diffract well as the result of the strain subsequent of the reaction. The data appear truncated at low resolution and one complete sphere of data was collected up to 59 degrees. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis. ; _diffrn_ambient_temperature 223(2) _diffrn_radiation_wavelength 1.54180 _diffrn_radiation_type CuK\a _diffrn_radiation_source 'Sealed Tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS Smart 2K/Platform' _diffrn_measurement_method \w _diffrn_detector_area_resol_mean 5.5 _diffrn_standards_number 5 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0.00 _diffrn_reflns_number 18629 _diffrn_reflns_av_R_equivalents 0.046 _diffrn_reflns_av_sigmaI/netI 0.2982 _diffrn_reflns_limit_h_min -27 _diffrn_reflns_limit_h_max 20 _diffrn_reflns_limit_k_min -25 _diffrn_reflns_limit_k_max 25 _diffrn_reflns_limit_l_min -13 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 3.45 _diffrn_reflns_theta_max 59.19 _diffrn_measured_fraction_theta_max 0.937 _diffrn_reflns_theta_full 59.19 _diffrn_measured_fraction_theta_full 0.937 _computing_data_collection 'SMART (Bruker, 1999)' _computing_cell_refinement 'SMART (Bruker, 1999)' _computing_data_reduction 'SAINT (Bruker, 1999)' _computing_structure_solution 'SHELXS97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL97 (Sheldrick, 1997)' _computing_molecular_graphics 'XP (Bruker, 1999)' _computing_publication_material 'UdMX (local program)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The space group I41/a was determined based on systematic absences and intensity statistics. A successful direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Several full-matrix least squares / difference Fourier cycles were performed which located the remainder of the non-hydrogen atoms. By this way, the host network can be easily found and refined but no resolved solvent molecules could be found within the cavities. Refinement of the acetyl group with an occupancy factor equals to unity does not converge and give large anisotropic thermal parameters converging to unreasonable values. Refinement with a variable occupancy factor and using restraints on some distances yielded acceptable value for the thermal parameters. The solvent molecules were refined as pseudo atoms from the few significant difference peaks found by Fourier difference. ; _reflns_number_total 2675 _reflns_number_gt 559 _reflns_threshold_expression 'I > 2\s(I)' _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0950P)^2^+17.5400P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2675 _refine_ls_number_parameters 210 _refine_ls_number_restraints 75 _refine_ls_R_factor_all 0.3808 _refine_ls_R_factor_gt 0.1196 _refine_ls_wR_factor_ref 0.3579 _refine_ls_wR_factor_gt 0.3102 _refine_ls_goodness_of_fit_ref 1.094 _refine_ls_restrained_S_all 1.094 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 _refine_diff_density_max 0.346 _refine_diff_density_min -0.233 _refine_diff_density_rms 0.066 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.5000 0.2500 0.3750 0.099(6) Uani 1 4 d SU . 1 N1 N 0.3774(4) 0.3793(3) 0.0755(8) 0.108(3) Uani 1 1 d U A 1 H1 H 0.3882 0.4114 0.0739 0.130 Uiso 1 1 calc . B 1 C2 C 0.4665(4) 0.2854(5) 0.2993(9) 0.087(3) Uani 1 1 d U A 1 N2 N 0.3206(4) 0.4116(4) -0.0506(8) 0.113(3) Uani 1 1 d U A 1 C3 C 0.4642(5) 0.3390(5) 0.3044(9) 0.100(4) Uani 1 1 d U A 1 H3 H 0.4840 0.3559 0.3599 0.120 Uiso 1 1 calc . C 1 N3 N 0.2527(4) 0.3553(4) -0.1240(8) 0.110(3) Uani 1 1 d U A 1 C4 C 0.4344(5) 0.3700(4) 0.2323(10) 0.112(4) Uani 1 1 d U A 1 H4 H 0.4339 0.4065 0.2403 0.134 Uiso 1 1 calc . D 1 N4 N 0.3181(4) 0.3192(4) -0.0006(8) 0.104(3) Uani 1 1 d U A 1 C5 C 0.4058(5) 0.3461(5) 0.1497(10) 0.097(4) Uani 1 1 d U A 1 N5 N 0.2577(4) 0.4413(4) -0.1764(8) 0.135(4) Uani 1 1 d U A 1 H5A H 0.2721 0.4720 -0.1746 0.162 Uiso 1 1 calc . E 1 H5B H 0.2303 0.4359 -0.2178 0.162 Uiso 1 1 calc . F 1 C6 C 0.4060(4) 0.2912(5) 0.1392(9) 0.099(4) Uani 1 1 d U A 1 H6 H 0.3862 0.2741 0.0840 0.118 Uiso 1 1 calc . G 1 N6 N 0.2532(4) 0.2677(4) -0.0780(8) 0.132(4) Uani 1 1 d DU A 1 H6A H 0.2254 0.2655 -0.1196 0.158 Uiso 1 1 calc . H 1 C7 C 0.4373(5) 0.2633(4) 0.2155(9) 0.103(4) Uani 1 1 d U A 1 H7 H 0.4383 0.2268 0.2084 0.123 Uiso 1 1 calc . I 1 C8 C 0.3348(5) 0.3688(6) 0.0044(11) 0.099(4) Uani 1 1 d U A 1 C9 C 0.2781(6) 0.4014(6) -0.1139(12) 0.115(4) Uani 1 1 d U A 1 C10 C 0.2762(5) 0.3148(6) -0.0670(12) 0.109(4) Uani 1 1 d U A 1 C11 C 0.2721(5) 0.2208(4) -0.0241(10) 0.157(5) Uani 1 1 d DU A 1 H11A H 0.2426 0.1998 0.0023 0.189 Uiso 1 1 calc R A 1 H11B H 0.2937 0.2300 0.0406 0.189 Uiso 1 1 calc R A 1 C12 C 0.3044(5) 0.1893(5) -0.1082(12) 0.210(7) Uani 1 1 d DU A 1 H12A H 0.2862 0.1873 -0.1803 0.252 Uiso 1 1 calc R A 1 H12B H 0.3100 0.1538 -0.0804 0.252 Uiso 1 1 calc R A 1 O1 O 0.3597(5) 0.2194(4) -0.1225(10) 0.232(5) Uani 1 1 d DU A 1 C13 C 0.3648(5) 0.2508(6) -0.2163(12) 0.141(7) Uani 0.70 1 d PDU A 1 O2 O 0.3286(4) 0.2600(4) -0.2726(9) 0.154(4) Uani 0.70 1 d PDU A 1 C14 C 0.4174(5) 0.2787(6) -0.2109(13) 0.147(6) Uani 0.70 1 d PDU A 1 H14A H 0.4381 0.2641 -0.1505 0.221 Uiso 0.70 1 calc PR A 1 H14B H 0.4118 0.3155 -0.1974 0.221 Uiso 0.70 1 calc PR A 1 H14C H 0.4357 0.2741 -0.2813 0.221 Uiso 0.70 1 calc PR A 1 O20 O 0.2941(8) 0.4217(8) 0.5142(19) 0.450 Uiso 1 1 d . J 2 C21 C 0.4710(12) 0.4689(11) 0.474(3) 0.450 Uiso 1 1 d . K 2 C22 C 0.3687(12) 0.3603(12) 0.598(3) 0.450 Uiso 1 1 d . L 2 C23 C 0.3483(13) 0.5856(13) 0.782(3) 0.450 Uiso 1 1 d . M 2 C24 C 0.3434(12) 0.5435(12) 0.559(2) 0.450 Uiso 1 1 d . N 2 C25 C 0.4014(13) 0.4988(12) 0.491(3) 0.450 Uiso 1 1 d . K 2 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.105(11) 0.105(11) 0.087(18) 0.000 0.000 0.000 N1 0.115(9) 0.105(8) 0.104(8) 0.005(6) -0.017(5) -0.004(6) C2 0.100(9) 0.093(8) 0.068(8) -0.006(7) 0.011(6) 0.002(8) N2 0.130(9) 0.097(7) 0.114(9) 0.018(6) -0.033(6) -0.002(7) C3 0.122(10) 0.096(7) 0.081(8) -0.007(7) -0.010(6) -0.009(8) N3 0.094(8) 0.120(9) 0.116(8) 0.015(7) -0.006(6) -0.010(6) C4 0.146(13) 0.086(8) 0.103(11) -0.015(7) -0.022(7) 0.003(7) N4 0.119(9) 0.096(7) 0.096(8) 0.010(6) -0.014(6) -0.008(7) C5 0.108(10) 0.099(8) 0.085(9) -0.003(7) -0.004(6) 0.003(8) N5 0.144(9) 0.120(8) 0.141(9) 0.028(6) -0.044(7) -0.006(7) C6 0.115(10) 0.098(8) 0.083(8) -0.009(7) -0.007(6) -0.013(8) N6 0.133(9) 0.111(9) 0.152(9) 0.017(8) -0.044(7) -0.011(7) C7 0.142(12) 0.090(8) 0.077(9) -0.002(6) -0.001(6) 0.000(7) C8 0.090(10) 0.107(9) 0.099(10) 0.015(8) 0.005(6) 0.000(8) C9 0.126(13) 0.108(9) 0.112(11) 0.021(9) -0.018(7) -0.009(8) C10 0.100(12) 0.104(9) 0.123(13) 0.007(9) -0.001(7) -0.001(7) C11 0.158(7) 0.158(7) 0.156(7) -0.002(5) -0.004(5) 0.004(5) C12 0.207(8) 0.213(8) 0.210(8) -0.004(5) -0.005(5) -0.001(5) O1 0.238(6) 0.228(6) 0.230(6) -0.016(5) 0.004(5) 0.007(5) C13 0.146(8) 0.138(8) 0.140(8) -0.008(5) 0.006(5) 0.011(5) O2 0.153(6) 0.162(6) 0.148(6) -0.012(4) -0.013(5) 0.013(5) C14 0.143(8) 0.149(8) 0.150(8) -0.005(5) 0.007(5) -0.001(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C2 1.542(11) 6_554 Y C1 C2 1.542(11) 16_656 Y C1 C2 1.542(11) 11_666 Y C1 C2 1.542(11) . Y N1 C8 1.409(12) . Y N1 C5 1.428(12) . Y C2 C7 1.373(13) . Y C2 C3 1.377(12) . Y N2 C8 1.328(13) . Y N2 C9 1.353(14) . Y C3 C4 1.401(13) . Y N3 C9 1.355(13) . Y N3 C10 1.382(13) . Y C4 C5 1.374(13) . Y N4 C10 1.340(13) . Y N4 C8 1.344(13) . Y C5 C6 1.415(13) . Y N5 C9 1.369(13) . Y C6 C7 1.409(12) . Y N6 C10 1.349(13) . Y N6 C11 1.449(5) . Y C11 C12 1.531(5) . Y C12 O1 1.624(14) . Y O1 C13 1.386(5) . Y C13 O2 1.170(5) . Y C13 C14 1.529(5) . Y O20 C23 1.20(3) 4_454 Y C21 C25 1.95(4) . Y C22 C23 1.57(3) 4_454 Y C23 O20 1.20(3) 3 Y C23 C22 1.57(3) 3 Y loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 C2 110.1(4) 6_554 16_656 Y C2 C1 C2 110.1(4) 6_554 11_666 Y C2 C1 C2 108.3(8) 16_656 11_666 Y C2 C1 C2 108.3(8) 6_554 . Y C2 C1 C2 110.1(4) 16_656 . Y C2 C1 C2 110.1(4) 11_666 . Y C8 N1 C5 131.0(11) . . Y C7 C2 C3 114.9(11) . . Y C7 C2 C1 119.2(11) . . Y C3 C2 C1 125.9(11) . . Y C8 N2 C9 109.8(12) . . Y C2 C3 C4 124.3(11) . . Y C9 N3 C10 113.8(13) . . Y C5 C4 C3 118.6(12) . . Y C10 N4 C8 111.2(13) . . Y C4 C5 C6 120.4(12) . . Y C4 C5 N1 116.9(13) . . Y C6 C5 N1 122.7(12) . . Y C7 C6 C5 116.8(11) . . Y C10 N6 C11 123.5(12) . . Y C2 C7 C6 124.9(12) . . Y N2 C8 N4 132.3(14) . . Y N2 C8 N1 110.7(13) . . Y N4 C8 N1 116.9(13) . . Y N2 C9 N3 127.2(14) . . Y N2 C9 N5 118.0(14) . . Y N3 C9 N5 114.8(14) . . Y N4 C10 N6 119.0(14) . . Y N4 C10 N3 125.3(14) . . Y N6 C10 N3 115.7(14) . . Y N6 C11 C12 109.2(10) . . Y C11 C12 O1 106.9(11) . . Y C13 O1 C12 116.3(12) . . Y O2 C13 O1 120.5(14) . . Y O2 C13 C14 129.1(14) . . Y O1 C13 C14 108.7(11) . . Y O20 C23 C22 149(4) 3 3 Y loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C2 C1 C2 C7 51.2(8) 6_554 . . . Y C2 C1 C2 C7 -69.2(7) 16_656 . . . Y C2 C1 C2 C7 171.5(10) 11_666 . . . Y C2 C1 C2 C3 -126.2(12) 6_554 . . . Y C2 C1 C2 C3 113.5(13) 16_656 . . . Y C2 C1 C2 C3 -5.8(11) 11_666 . . . Y C7 C2 C3 C4 0.9(18) . . . . Y C1 C2 C3 C4 178.3(9) . . . . Y C2 C3 C4 C5 -0.9(19) . . . . Y C3 C4 C5 C6 1.0(18) . . . . Y C3 C4 C5 N1 -177.8(10) . . . . Y C8 N1 C5 C4 -160.6(12) . . . . Y C8 N1 C5 C6 20.7(18) . . . . Y C4 C5 C6 C7 -1.1(17) . . . . Y N1 C5 C6 C7 177.6(10) . . . . Y C3 C2 C7 C6 -1.0(17) . . . . Y C1 C2 C7 C6 -178.6(9) . . . . Y C5 C6 C7 C2 1.2(17) . . . . Y C9 N2 C8 N4 7.2(19) . . . . Y C9 N2 C8 N1 -176.8(10) . . . . Y C10 N4 C8 N2 -6.9(19) . . . . Y C10 N4 C8 N1 177.3(10) . . . . Y C5 N1 C8 N2 -179.8(11) . . . . Y C5 N1 C8 N4 -3.2(17) . . . . Y C8 N2 C9 N3 -0.9(19) . . . . Y C8 N2 C9 N5 179.7(11) . . . . Y C10 N3 C9 N2 -4.0(19) . . . . Y C10 N3 C9 N5 175.4(11) . . . . Y C8 N4 C10 N6 -177.5(11) . . . . Y C8 N4 C10 N3 0.2(17) . . . . Y C11 N6 C10 N4 -1.9(19) . . . . Y C11 N6 C10 N3 -179.8(10) . . . . Y C9 N3 C10 N4 4.4(18) . . . . Y C9 N3 C10 N6 -177.9(11) . . . . Y C10 N6 C11 C12 -98.5(14) . . . . Y N6 C11 C12 O1 74.4(13) . . . . Y C11 C12 O1 C13 -99.8(14) . . . . Y C12 O1 C13 O2 10(2) . . . . Y C12 O1 C13 C14 175.9(11) . . . . Y loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A N1 H1 N3 0.87 2.43 3.253(12) 158.4 3 N5 H5A O20 0.87 2.46 3.28(2) 157.4 3_554 N5 H5B N2 0.87 2.03 2.893(12) 172.6 4_454 N6 H6A O2 0.87 2.00 2.844(14) 162.9 13_554 #============================================================================ #===END