Synthesis of 1: A solution of Is₂SnF₂ (1.58 g, 2.81 mmol) in 10 ml mesitylene is allowed to react with Si(PH₂)₄ (0.43 g, 2.69 mmol) at -30° C in a teflon-vessel. After the reaction mixture has reached room temperature (2h), the volatile components have been removed in vacuo (10⁻³ torr) leading to the desired product in the form of a colourless powder in quantitative yield. ¹H NMR (300K, C₆D₆): δ = 7.10 (s, 4H, arom. H), 3.35 (sept., ³J(H, H) = 6.6 Hz, 4 H, Me₂CH), 2.72 (sept., ³J(H, H) = 6.9 Hz, 2H, Me₂CH), 2.41 (dd, ¹J(H, P) = 121 Hz, 3J(H, F) = 12 Hz, 2H, PH₂), 1.23 (d, ³J(H, H) = 6.9 Hz, 12H, *Me*₂CH), 1.27 (d, ³J(H, H) = 6.6 Hz), 24H, *Me*₂CH). Selected MS(EI, 70 eV) data: m/z(%) = 559 ([M-F]⁺, 5), 203 (Is⁺, 100).

C₃₀H₄₈FPSn (577.3): calc. C (62.41%), H (8.38%); obs. C (62.03%), H (8.32%).

Synthesis of **2**: A solution of **1** (2.22 mmol) in 5 ml THF is stirred for 3 d in a sealed glass tube. The desired product crystallises during the reaction time in the form of large colourless cubes. SiF₄ escapes after opening the tube and the solvent is removed in vacuo. Re crystallisation of the solid residue in hot THF furnishes analytically pure **2** in quantitative yield. ¹H NMR (300 K, C₆D₆): δ = 7.22 (s, 8H, arom. H), 4.38 (md, ¹J(H, P) = 121 Hz, 2H, PH), 3.76 (br.s, 8H, Me₂CH), 2.82 (sept., ³J(H, H) = 7.1 Hz, 4H, Me₂CH), 1.29 (d, ³J(H, H) = 7.0 Hz, 48 H, *Me*₂CH), 1.25 (d, ³J(H, H) = 7.0 Hz, 48H, *Me*₂CH). Selected MS (EI, 70 eV) data: m/z (%) = 558 (M/2⁺, 17), 545 ([M/2-CH2]⁺, 23), 43 (*i*Pr⁺, 100). C₆₀H₉₄P₂Sn₂ (1114.6): calc. C (64.73%), H (8.51%); obs. C (64.36%), H (8.40%).

Synthesis of **3**: A solution of **1** (2.81 mmol) in 10 ml benzene is allowed to react with $Si(PH_2)_4$ (5.62 mmol) at room temperature. After stirring for 16 h, the volatile components of the reaction mixture have been removed in vacuo and the solid residue has been recrystallised in 5 ml hexane. The product can be isolated in the form of large colourless crystals in quantitative yield. M.p. = 50°C, decomp.>180°C. ¹H NMR (300K, C₆D₆): δ = 7.17 (s, 4H, arom. H), 3.45 (sept., ³J(H, H) = 6.6 Hz, 4 H, Me₂CH), 2.86 (sept., ³J(H, H) = 6.9 Hz, 2H, Me₂CH), 2.21 (md, ¹J(H, P) = 172.8 Hz, 4H, PH₂), 1.30 (d, ³J(H, H) = 6.9 Hz, 12H, *Me*₂CH), 1.29 (d, ³J(H, H) = 6.6 Hz), 24H, *Me*₂CH). Selected MS(EI, 70 eV) data: m/z(%) = 559 ([M-PH₂]⁺, 100), 527 (Is₂Sn⁺, 11).

 $C_{30}H_{50}P_2Sn$ (591.3): calc. C (60.90%), H (8.50%); obs. C (60.90%), H (8.39%).

Supplementary Material (ESI) for Chem. Comm. This journal is © The Royal Society of Chemistry 2003

Synthesis of **4**: A solution of **3** (1.45 g, 2.45 mmol) in 10 ml THF is allowed to react with Me₃SnF (0.56 g, 3.07 mmol) in a glass-tube at room temperature. All of the insoluble Me₃SnF has been consumed after 4 h, leading to a clear solution. The sparingly soluble product precipitates quantitatively after 12 h. Re-crystallisation of the latter solid in hot THF furnishes large crystals. Alternatively, **4** is also suitable in quantitative yield by the reaction of a solution of P(SnMe₃)₃ (1.83 g, 3.50 mmol) with Me₃SnF (0.64 g, 3.50 mmol) in an atmosphere of SiF₄ at -20° C in 10 ml THF. Yield: 3.30 g (3.5 mmol). Decomp.>40°C. ¹H NMR (310 K, C₄D₈O): δ = 0.43 (s, w_{1/2} = 4 Hz); ¹³C{¹H} NMR: δ = -3.5 (s, w_{1/2} = 24 Hz). C₁₂H₃₆F₅PSiSn₄ (809.24): calc. C (17.81%), H (4.48%) Sn (58.66%); obs. C (17.21%), H (4.32%), Sn (58.39%).

Supplementary Material (ESI) for Chem. Comm. This journal is © The Royal Society of Chemistry 2003

CP/MAS ³¹P NMR of 4 δ (³¹P) = -301.55 $J_{PSn} = 512 \text{ Hz}$