# Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2003 data_global _publ_contact_author_email G.JACKSON@ADFA.EDU.AU _publ_contact_author_name 'Dr W. Gregory Jackson' _journal_name_full Chem.Commun. _journal_coden_Cambridge 0182 _publ_contact_author_address ; School of Chemistry University College, The University of New South Wales AUSTRALIA ; _publ_section_title ; Synthesis and crystal structure of a hydrido tetraamine cobalt(III) complex ; _publ_section_references ; McLaughlin, G.M. (1983). PWREDU. Program for data reduction for Philips PW1100/20 diffractometer. Australian National Univ., Canberra. Molecular Structure Corporation. (1992-1997). teXsan. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. and Smykalla, C. (1992). PATTY. The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. Rae, A. D. (1996). RAELS96: A Comprehensive Constrained Least-Square Refinement Program. Australian National University, Canberra, A. C. T., Australia. Wilson, A. J. C. (1995). Editor, "International Tables for Crystallography", Vol. C, Kluwer Academic Publishers, Dordrecht, Tables 6.1.1.1, 4.2.6.8.and 4.2.4.3. Hall, S. R., King, G. S. D. & Stewart, J. M. (1995). Editors. Xtal3.4 Reference Manual. Univ. of Western Australia: Lamb, Perth, Australia. ; loop_ _publ_author_name _publ_author_address A.F.M.M.Rahman ; School of Chemistry, University College, University of New South Wales, Australian Defence Force Academy, Canberra, A. C. T. 2601, Australia. ; W.G.Jackson ; School of Chemistry, University College, University of New South Wales, Australian Defence Force Academy, Canberra, A. C. T. 2601, Australia. ; A.C.Willis ; Research School of Chemistry, Australian National University, Canberra, A. C. T. 0200, Australia ; A.D.Rae ; Research School of Chemistry, Australian National University, Canberra, A. C. T. 0200, Australia ; data_rah1 _database_code_CSD 217224 _vrf_PLAT080_rah1 ; PROBLEM: Maximum Shift/Error ............................ 0.90 RESPONSE: ...This is an artifact caused by looking at errors one at a time. High parameter correlation caused by pseudo symmetry, disorder, rigid body thermal motion, corefinement of local coordinates and axial systems can cause such events. Refinement did converge as did shifts in isolated atom parameters derived from the parameterisation. ; _audit_creation_date 1998-11-16 _audit_creation_method 'by teXsan v1.8' _audit_update_record ; 1998 - adr does refinement 2003 - wgj write paper 2003-05-14 - acw compiles cif ; #--------------------------------------------------------------------------- #--------------------------------------------------------------------------- _computing_data_collection 'Philips PW1100/20 software 1976' _computing_cell_refinement xtal_LATCON _computing_data_reduction 'pwredu, xtal_ADDREF_SORTRF' _computing_structure_solution ' PATTY in DIRDIF ' _computing_structure_refinement RAELS96 _computing_publication_material 'teXsan (MSC, 1992-1997)' #--------------------------------------------------------------------------- _cell_length_a 11.039(5) _cell_length_b 13.297(5) _cell_length_c 16.607(5) _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_volume 2437.7(16) _cell_formula_units_Z 4 _cell_measurement_temperature 293 _cell_measurement_reflns_used 25 _cell_measurement_theta_min 9.5 _cell_measurement_theta_max 12.3 #--------------------------------------------------------------------------- _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P c a 21 ' _symmetry_Int_Tables_number 29 _symmetry_space_group_name_Hall ? loop_ _symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 1 x,y,z 2 1/2-x,y,1/2+z 3 1/2+x,-y,z 4 -x,-y,1/2+z #--------------------------------------------------------------------------- _publ_section_exptl_prep ; ENTER EXPERIMENTAL SECTION ; _exptl_crystal_description block _exptl_crystal_colour orange _exptl_crystal_size_max 0.36 _exptl_crystal_size_mid 0.25 _exptl_crystal_size_min 0.21 _exptl_crystal_density_diffrn 1.411 _exptl_crystal_density_meas 'not measured' _chemical_formula_weight 517.89 _chemical_formula_analytical ? _chemical_formula_sum 'C14 H41 Cl Co N5 O9 ' _chemical_formula_moiety ; C12 H35 Co N4 O 2+, N O3 -, Cl O4 -, C2 H6 O ; _chemical_formula_structural ? _chemical_compound_source ? _exptl_crystal_F_000 1104.00 _exptl_absorpt_coefficient_mu 0.864 _exptl_absorpt_correction_type analytical _exptl_absorpt_process_details ; ABSORB in xtal ; _exptl_absorpt_correction_T_min .772 _exptl_absorpt_correction_T_max .838 #--------------------------------------------------------------------------- _diffrn_special_details ; ? ; _diffrn_ambient_temperature 293 _diffrn_radiation_wavelength 0.7107 _diffrn_radiation_type 'Mo K\a' _diffrn_radiation_source 'X-ray tube' _diffrn_radiation_monochromator graphite _diffrn_radiation_detector 'scintillation counter' _diffrn_measurement_device 'Philips PW1100/20 diffractometer' _diffrn_measurement_method theta/2theta _diffrn_standards_number 3 _diffrn_standards_interval_time 120 _diffrn_standards_decay_% 3 _diffrn_reflns_number 2915 _reflns_number_total 2915 _reflns_number_gt 1587 _reflns_threshold_expression I>3.00\s(I) _diffrn_reflns_av_R_equivalents 0.00000 _diffrn_reflns_av_sigmaI/netI ? _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 14 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 17 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 1.5 _diffrn_reflns_theta_max 27.5 _diffrn_reflns_theta_full 27.5 _diffrn_measured_fraction_theta_max 1.000 _diffrn_measured_fraction_theta_full 1.000 _diffrn_reflns_reduction_process 'Lp corrections applied' _diffrn_orient_matrix_UB_11 0.00000 _diffrn_orient_matrix_UB_12 0.00000 _diffrn_orient_matrix_UB_13 0.00000 _diffrn_orient_matrix_UB_21 0.00000 _diffrn_orient_matrix_UB_22 0.00000 _diffrn_orient_matrix_UB_23 0.00000 _diffrn_orient_matrix_UB_31 0.00000 _diffrn_orient_matrix_UB_32 0.00000 _diffrn_orient_matrix_UB_33 0.00000 #--------------------------------------------------------------------------- loop_ _atom_type_symbol _atom_type_oxidation_number _atom_type_number_in_cell _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C 0 56 0.002 0.002 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ; H 0 164 0.000 0.000 ;International Tables for Crystallography (1992, Vol. C, Table 6.1.1.2) ; Cl 0 4 0.132 0.159 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ; Co 0 4 0.299 0.973 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ; N 0 20 0.004 0.003 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ; O 0 36 0.008 0.006 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ; #--------------------------------------------------------------------------- loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy _atom_site_U_iso_or_equiv _atom_site_refinement_flags _atom_site_adp_type _atom_site_calc_flag _atom_site_calc_attached_atom Co1 0.4832(1) 0.2564(1) 0.5003(3) 1.0 0.036(1) . Uani d ? N1 0.5091(10) 0.3934(5) 0.4622(5) 1.0 0.052(2) . Uani d ? N2 0.4704(9) 0.2204(7) 0.3869(4) 1.0 0.045(2) . Uani d ? C1 0.5428(10) 0.3921(9) 0.3741(6) 1.0 0.056(2) . Uani d ? C2 0.4649(10) 0.3120(8) 0.3350(7) 1.0 0.061(2) . Uani d ? C3 0.5225(15) 0.4979(11) 0.3377(9) 1.0 0.076(3) . Uani d ? C4 0.6785(11) 0.3668(14) 0.3636(10) 1.0 0.076(3) . Uani d ? C5 0.3298(11) 0.3508(11) 0.3253(9) 1.0 0.061(3) . Uani d ? C6 0.5063(15) 0.2753(13) 0.2514(7) 1.0 0.068(3) . Uani d ? N1a 0.4654(10) 0.1206(6) 0.5425(6) 1.0 0.052(2) . Uani d ? N2a 0.5058(10) 0.2873(7) 0.6140(4) 1.0 0.045(2) . Uani d ? C1a 0.4554(11) 0.1145(10) 0.6329(6) 1.0 0.056(2) . Uani d ? C2a 0.5350(10) 0.1976(9) 0.6650(7) 1.0 0.061(2) . Uani d ? C3a 0.4940(17) 0.0077(11) 0.6591(9) 1.0 0.076(3) . Uani d ? C4a 0.3219(12) 0.1353(14) 0.6551(11) 1.0 0.076(3) . Uani d ? C5a 0.6712(11) 0.1681(12) 0.6466(10) 1.0 0.061(3) . Uani d ? C6a 0.5160(15) 0.2162(14) 0.7557(7) 1.0 0.068(3) . Uani d ? O99 0.2972(6) 0.2872(5) 0.5113(4) 1.0 0.065(3) . Uani d ? Cl1 0.7154(5) 0.0154(4) 0.3953(4) 0.663(8) 0.060(5) . Uani d ? O11 0.7865(11) -0.0565(9) 0.3566(8) 0.663(8) 0.099(8) . Uani d ? O12 0.7466(14) 0.0194(11) 0.4765(6) 0.663(8) 0.152(11) . Uani d ? O13 0.7349(13) 0.1091(7) 0.3601(8) 0.663(8) 0.109(8) . Uani d ? O14 0.5936(9) -0.0105(10) 0.3879(9) 0.663(8) 0.131(5) . Uani d ? Cl1' 0.7461(10) 0.0033(8) 0.3870(7) 0.337(8) 0.061(6) . Uani d ? O11' 0.7030(29) 0.0158(21) 0.4652(10) 0.337(8) 0.127(8) . Uani d ? O12' 0.7180(25) -0.0932(11) 0.3600(16) 0.337(8) 0.106(7) . Uani d ? O13' 0.6922(25) 0.0740(16) 0.3365(15) 0.337(8) 0.096(8) . Uani d ? O14' 0.8713(12) 0.0164(21) 0.3861(20) 0.337(8) 0.168(10) . Uani d ? N3 0.2535(7) 0.5054(5) 0.6155(5) 1.0 0.056(9) . Uani d ? O31 0.2095(13) 0.5743(9) 0.6561(8) 1.0 0.135(13) . Uani d ? O32 0.2252(12) 0.4960(8) 0.5439(7) 1.0 0.110(12) . Uani d ? O33 0.3259(16) 0.4460(12) 0.6466(8) 1.0 0.212(8) . Uani d ? O4 0.0869(18) 0.1775(18) 0.4959(19) 0.42(2) 0.089(11) . Uani d ? C41 -0.0162(18) 0.2265(19) 0.5287(15) 0.42(2) 0.113(14) . Uani d ? C42 -0.0702(51) 0.2982(48) 0.4654(26) 0.42(2) 0.178(20) . Uani d ? O4' 0.0923(14) 0.2180(15) 0.4428(11) 0.58(2) 0.095(12) . Uani d ? C41' -0.0229(14) 0.2175(15) 0.4809(12) 0.58(2) 0.110(14) . Uani d ? C42' -0.0365(30) 0.3130(22) 0.5326(22) 0.58(2) 0.182(19) . Uani d ? H1Co 0.6106(2) 0.2352(4) 0.4928(4) 1.0 0.065(3) . Uani d ? H1N1 0.5761 0.4251 0.4938 1.0 0.052 . Uani c ? H2N1 0.4331 0.4333 0.4695 1.0 0.052 . Uani c ? H1N2 0.3952 0.1798 0.3786 1.0 0.045 . Uani c ? H2N2 0.5427 0.1795 0.3713 1.0 0.045 . Uani c ? H1N1a 0.5376 0.0805 0.5254 1.0 0.052 . Uani c ? H2N1a 0.3905 0.0905 0.5186 1.0 0.052 . Uani c ? H1N2a 0.4294 0.3183 0.6349 1.0 0.045 . Uani c ? H2N2a 0.5737 0.3366 0.6190 1.0 0.045 . Uani c ? H1C3 0.5760 0.5475 0.3656 1.0 0.076 . Uani c ? H2C3 0.5425 0.4966 0.2790 1.0 0.076 . Uani c ? H3C3 0.4359 0.5179 0.3449 1.0 0.076 . Uani c ? H1C4 0.7287 0.4203 0.3897 1.0 0.076 . Uani c ? H2C4 0.6963 0.3005 0.3895 1.0 0.076 . Uani c ? H3C4 0.6985 0.3633 0.3050 1.0 0.076 . Uani c ? H1C5 0.2796 0.2971 0.2995 1.0 0.061 . Uani c ? H2C5 0.2957 0.3672 0.3795 1.0 0.061 . Uani c ? H3C5 0.3289 0.4124 0.2908 1.0 0.061 . Uani c ? H1C6 0.4488 0.2229 0.2313 1.0 0.068 . Uani c ? H2C6 0.5075 0.3333 0.2131 1.0 0.068 . Uani c ? H3C6 0.5894 0.2459 0.2556 1.0 0.068 . Uani c ? H1C3a 0.4371 -0.0428 0.6355 1.0 0.076 . Uani c ? H2C3a 0.5781 -0.0061 0.6396 1.0 0.076 . Uani c ? H3C3a 0.4919 0.0029 0.7192 1.0 0.076 . Uani c ? H1C4a 0.2697 0.0799 0.6337 1.0 0.076 . Uani c ? H2C4a 0.3135 0.1386 0.7150 1.0 0.076 . Uani c ? H3C4a 0.2960 0.2007 0.6310 1.0 0.076 . Uani c ? H1C5a 0.7263 0.2219 0.6672 1.0 0.061 . Uani c ? H2C5a 0.6909 0.1030 0.6737 1.0 0.061 . Uani c ? H3C5a 0.6825 0.1607 0.5871 1.0 0.061 . Uani c ? H1C6a 0.5706 0.2718 0.7740 1.0 0.068 . Uani c ? H2C6a 0.4298 0.2355 0.7657 1.0 0.068 . Uani c ? H3C6a 0.5355 0.1535 0.7863 1.0 0.068 . Uani c ? H1O4 0.0756 0.1682 0.4367 0.42 0.084 . Uani c ? H1C41 0.0082 0.2658 0.5774 0.42 0.140 . Uani c ? H2C41 -0.0782 0.1751 0.5442 0.42 0.112 . Uani c ? H1C42 -0.1429 0.3327 0.4884 0.42 0.254 . Uani c ? H2C42 -0.0083 0.3496 0.4499 0.42 0.200 . Uani c ? H3C42 -0.0947 0.2589 0.4166 0.42 0.167 . Uani c ? H1O4' 0.0723 0.1482 0.4245 0.58 0.084 . Uani c ? H1C41' -0.0300 0.1567 0.5160 0.58 0.095 . Uani c ? H2C41' -0.0879 0.2161 0.4390 0.58 0.141 . Uani c ? H1C42' -0.1176 0.3127 0.5595 0.58 0.218 . Uani c ? H2C42' 0.0285 0.3144 0.5745 0.58 0.181 . Uani c ? H3C42' -0.0294 0.3738 0.4975 0.58 0.242 . Uani c ? H1O99 0.2747 0.3587 0.5225 1.0 0.065 . Uani c ? H2O99 0.2220 0.2459 0.5055 1.0 0.065 . Uani c ? loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_12 _atom_site_aniso_U_13 _atom_site_aniso_U_23 Co1 0.029(1) 0.038(1) 0.041(1) 0.006(1) -0.006(1) -0.001(1) N1 0.068(5) 0.042(3) 0.046(3) -0.003(3) 0.012(3) -0.002(3) N2 0.050(4) 0.043(3) 0.043(3) 0.002(3) 0.012(3) -0.004(2) C1 0.067(5) 0.050(4) 0.051(4) -0.010(4) 0.005(4) 0.004(3) C2 0.078(6) 0.055(5) 0.051(4) -0.002(4) -0.001(4) 0.005(4) C3 0.104(7) 0.054(4) 0.069(5) 0.005(5) 0.005(6) 0.012(4) C4 0.049(6) 0.110(7) 0.071(7) 0.003(5) 0.012(5) 0.011(6) C5 0.033(5) 0.084(6) 0.066(7) 0.012(4) -0.009(5) 0.015(6) C6 0.088(6) 0.078(6) 0.038(3) 0.013(7) -0.004(6) -0.001(3) N1a 0.068(5) 0.042(3) 0.046(3) -0.003(3) 0.012(3) -0.002(3) N2a 0.050(4) 0.043(3) 0.043(3) 0.002(3) 0.012(3) -0.004(2) C1a 0.067(5) 0.050(4) 0.051(4) -0.010(4) 0.005(4) 0.004(3) C2a 0.078(6) 0.055(5) 0.051(4) -0.002(4) -0.001(4) 0.005(4) C3a 0.104(7) 0.054(4) 0.069(5) 0.005(5) 0.005(6) 0.012(4) C4a 0.049(6) 0.110(7) 0.071(7) 0.003(5) 0.012(5) 0.011(6) C5a 0.033(5) 0.084(6) 0.066(7) 0.012(4) -0.009(5) 0.015(6) C6a 0.088(6) 0.078(6) 0.038(3) 0.013(7) -0.004(6) -0.001(3) O99 0.036(4) 0.080(5) 0.080(6) 0.002(4) -0.006(5) 0.001(5) Cl1 0.074(8) 0.060(6) 0.045(7) 0.027(2) 0.004(3) -0.012(2) O11 0.108(10) 0.085(6) 0.104(10) 0.057(6) 0.022(6) -0.017(5) O12 0.251(16) 0.154(13) 0.052(8) 0.024(13) -0.031(4) -0.020(4) O13 0.163(14) 0.060(6) 0.105(10) 0.016(4) 0.016(9) -0.001(3) O14 0.072(7) 0.148(11) 0.171(12) 0.011(5) 0.022(6) -0.013(11) Cl1' 0.069(8) 0.063(6) 0.051(6) 0.028(2) 0.000(3) -0.011(2) O11' 0.211(13) 0.124(10) 0.047(8) 0.027(10) 0.020(3) -0.017(3) O12' 0.158(14) 0.059(5) 0.100(10) 0.025(4) 0.013(8) -0.022(4) O13' 0.135(12) 0.076(6) 0.075(7) 0.043(5) -0.005(7) 0.008(4) O14' 0.069(10) 0.202(17) 0.234(17) 0.017(5) -0.015(5) -0.016(17) N3 0.054(15) 0.041(14) 0.071(7) 0.006(8) -0.019(6) -0.019(7) O31 0.165(17) 0.121(20) 0.121(11) 0.082(12) -0.046(10) -0.071(12) O32 0.138(16) 0.112(20) 0.080(8) 0.052(11) -0.047(6) -0.035(9) O33 0.302(25) 0.205(16) 0.129(8) 0.196(15) -0.115(10) -0.072(9) O4 0.070(19) 0.123(18) 0.074(11) -0.017(12) -0.010(10) -0.011(10) C41 0.126(19) 0.132(22) 0.082(11) 0.024(15) 0.012(13) 0.001(10) C42 0.228(29) 0.206(33) 0.101(17) 0.114(24) 0.056(20) 0.038(18) O4' 0.091(19) 0.119(19) 0.076(11) -0.017(13) -0.005(10) -0.012(10) C41' 0.100(15) 0.149(22) 0.082(11) 0.028(15) 0.006(12) 0.005(11) C42' 0.304(38) 0.144(29) 0.099(16) 0.074(20) 0.067(24) 0.016(12) H1Co 0.036(4) 0.080(5) 0.080(6) 0.002(4) -0.006(5) 0.001(5) H1N1 0.068 0.042 0.046 -0.003 0.012 -0.002 H2N1 0.068 0.042 0.046 -0.003 0.012 -0.002 H1N2 0.050 0.043 0.043 0.002 0.012 -0.004 H2N2 0.050 0.043 0.043 0.002 0.012 -0.004 H1N1a 0.068 0.042 0.046 -0.003 0.012 -0.002 H2N1a 0.068 0.042 0.046 -0.003 0.012 -0.002 H1N2a 0.050 0.043 0.043 0.002 0.012 -0.004 H2N2a 0.050 0.043 0.043 0.002 0.012 -0.004 H1C3 0.104 0.054 0.069 0.005 0.005 0.012 H2C3 0.104 0.054 0.069 0.005 0.005 0.012 H3C3 0.104 0.054 0.069 0.005 0.005 0.012 H1C4 0.049 0.110 0.071 0.003 0.012 0.011 H2C4 0.049 0.110 0.071 0.003 0.012 0.011 H3C4 0.049 0.110 0.071 0.003 0.012 0.011 H1C5 0.033 0.084 0.066 0.012 -0.009 0.015 H2C5 0.033 0.084 0.066 0.012 -0.009 0.015 H3C5 0.033 0.084 0.066 0.012 -0.009 0.015 H1C6 0.088 0.078 0.038 0.013 -0.004 -0.001 H2C6 0.088 0.078 0.038 0.013 -0.004 -0.001 H3C6 0.088 0.078 0.038 0.013 -0.004 -0.001 H1C3a 0.104 0.054 0.069 0.005 0.005 0.012 H2C3a 0.104 0.054 0.069 0.005 0.005 0.012 H3C3a 0.104 0.054 0.069 0.005 0.005 0.012 H1C4a 0.049 0.110 0.071 0.003 0.012 0.011 H2C4a 0.049 0.110 0.071 0.003 0.012 0.011 H3C4a 0.049 0.110 0.071 0.003 0.012 0.011 H1C5a 0.033 0.084 0.066 0.012 -0.009 0.015 H2C5a 0.033 0.084 0.066 0.012 -0.009 0.015 H3C5a 0.033 0.084 0.066 0.012 -0.009 0.015 H1C6a 0.088 0.078 0.038 0.013 -0.004 -0.001 H2C6a 0.088 0.078 0.038 0.013 -0.004 -0.001 H3C6a 0.088 0.078 0.038 0.013 -0.004 -0.001 H1O4 0.061 0.117 0.074 -0.008 -0.011 -0.010 H1C41 0.217 0.117 0.085 0.002 0.031 -0.007 H2C41 0.076 0.179 0.081 0.024 0.000 0.010 H1C42 0.328 0.312 0.122 0.221 0.102 0.086 H2C42 0.349 0.146 0.103 0.085 0.081 0.019 H3C42 0.133 0.273 0.096 0.099 0.029 0.048 H1O4' 0.060 0.117 0.074 -0.009 -0.011 -0.010 H1C41' 0.063 0.144 0.077 0.002 -0.008 -0.002 H2C41' 0.089 0.247 0.087 0.053 0.008 0.031 H1C42' 0.321 0.222 0.112 0.158 0.088 0.052 H2C42' 0.336 0.117 0.091 -0.017 0.057 -0.012 H3C42' 0.463 0.149 0.113 0.106 0.113 0.025 H1O99 0.036 0.080 0.080 0.002 -0.006 0.001 H2O99 0.036 0.080 0.080 0.002 -0.006 0.001 #--------------------------------------------------------------------------- _refine_special_details ; Structure Solution and Refinement The structure was solved by heavy atom methods[1] and most of the remaining non-hydrogen atoms were located in Fourier maps.[2] This initial structure determination was of dubious quality but revealed the pseudo symmetry as described in the Appendix. A disordered parent structure in Bmab was then identified in which the Co lies on a 2/m.. site and the half weight water of an "apparent octahedral Co coordination" lies on the 2 axis parallel to a. An ordering of this parent structure then gives rise to a structure in Pca21, the scattering density of which can be described in terms of four symmetrised components (see Appendix). Two options were considered for the ordering of the ligands about the Co. OPTIONS 1 The cations pack as Pcab (Co on a -1 site) but a change to 5-coordination results in a Pcan component inducing a Bma2 component which corresponds to the Co moving along y (see Appendix). 2 The structure is a perturbation of Pcan (Co 5 coordinated cation on a 2.. site). The perturbation is a rotation so that the water is no longer on the rotation axis. Both options allow an ordering of the anions, either according to Bma2 or Pcan. In both instances inversion across the Co site switches between anions. The anions are of different sizes and sensible packing must result. The difference between the options is implicitly a determination of how the ligands coordinate and how the anions pack. The first option was found to be correct and is consistent with the Co being CoIII and 6-coordinate, the sixth position being occupied by a H-, trans to the water. The ligands have a local 2/m symmetry (axis in a general direction approximately perpendicular to c) so the local cation symmetry is reduced to m by the addition of the H2O and H-. To monitor refinement progress the reflection data was broken up into sets (see Table 1). Set 1 contains contributions from the Bmab and Bma2 components of the scattering density and set 3 contains contributions from the Pcab and Pcan components (see Appendix). Set 2 contains reflections violating the b-glide absence condition and thus sees only the Bma2 component. Set 4 contains reflections violating the n-glide absence condition and thus sees only the Pcab component. Set 5 contains reflections violating the b-glide absence condition and thus sees only the Pcan component. Refinement was satisfactory for all data subsets. The Bma2 component was the slowest to refine as was expected. This is because it is the smallest component and is seen combined with the largest component in the h + l even reflections. The fact that ions are rattling in holes in the structure did not help. The perchlorate ion was modelled as a 0.663(8) : 0.337 disorder and the nitrate ion has high libration about one axis. The ethanol of solvation was modelled as a 0.42(2) : 0.58 disorder. A twin-disorder model was also tested because of an apparent misscale of reflection data between h+l even and odd. No twinning was evident but a 0.891(3) : 0.109 disorder with respect to the pseudo b glide x, 1/2+y, 1/2-z was found to be appropriate. The effect of this was included by combining the structure factors as (1 - q) F(hkl) + q (-1)^k+l^ F(hk-l) where F(hkl) and F(hk-l) are structure factors for a non disordered structure and q was found to be 0.109(3). The disorder has the effect of reducing the scale of the Bma2 and Pcan components of the scattering density by a factor of (1 - 2q). Refinement used the comprehensive Constrained Least Squares Refinement program RAELS96 (Rae, 1996). Final refinement statistics are given in Table 1. 191 variables were used to produce a value for R(F) of 0.064 for the 1328 (out of 2915 independent reflections) with I(h) > 3\s(I(h)). Hydrogen atoms were relocated at geometrically sensible positions after each refinement cycle and given the thermal parameters implied by those of the atom to which they were attached. The H attached to the Co was fixed at 1.44 \%A from the Co in accordance with the requirement of a bond valence of 1.0 (Brese and O'Keeffe, 1991) with the H2O - Co - H angle at 180 deg. There was poorly defined but positive electron density in this region. The pseudo mirror symmetry of the ligands was maintained using restraints to make difference in bondlengths approach zero. The disordered ClO4- were refined as identical exact tetrahedra with refinable origins, orientations and bond length (final value 1.392(7) \%A). The thermal parameters were described by a refinable TLX model (Rae, 1975) common to both disordered ClO4-. The NO3- was refined as having local -6m2 symmetry and a fixed bond length (1.42 \%A) but a refinable origin and orientation; the thermal parameters were described by a refinable TLX model. The disordered ethanol were given fixed geometry and their origins, orientations and common TLX parameters were refined. Some parameter changes were damped as they oscillated during the refinement process. When refinement was terminated, shift/error ratios were all less than 0.93. Errors on atomic parameters, distances and angles are conditional as they have been evaluated assuming the constraints and restraints used in the refinement are appropriate. Unweighted and weighted agreement factors for the final model are: R = \S ||Fo| - |Fc|| / \S |Fo| = 0.064 Rw = [\S w(|Fo| - |Fc|)2 / \S wFo2]1/2 = 0.080 The standard deviation of an observation of unit weight8 (goodness of fit indicator) is 1.34. The weighting scheme was based on counting statistics and included a factor (4%) to downweight the intense reflections. The maximum and minimum peaks on the final difference Fourier map corresponded to 1.1 and -0.9 e-/\%A3, respectively. Neutral atom scattering factors were taken from the International Tables for Crystallography, Volume C.9 Anomalous dispersion effects were included in Fc; the values for \Df' and \Df" were also taken from reference 9, as were the values for the mass attenuation coefficients. Calculations were performed using crystallographic software packages XTAL10, teXsan2 and RAELS963. The structure factor listing has been scaled so Fo(hkl) = | Fc(hkl)/Yc | x Yo where Fc has no stacking fault and Yc models Yo by including the stacking fault using F(hkl) and F(hk-l) (see text, above). The listed Fo : Fc data has the effect of the stacking fault removed. Appendix In order to understand the refinement problem, it was useful to describe the structure as a modulation of an idealised Bmab parent structure in which the Co lies on a 2/m.. site and the water of an "apparent octahedral Co coordination" lies on the 2 axis parallel to a. Ideas about describing structures in terms of symmetrised components have been detailed for the specific case of Bismuth titanate by Rae, Thompson, Withers and Willis (1990) and have a general applicability as recognised by Aroyo and Perez-Mato (1998). Our structure can be thought of as the sum of four symmetrised scattering density components of symmetry Bmab, Bma2, Pcab and Pcan respectively. Each component contains Pca21 as a subgroup and is a subgroup of Bmab. The structure factor can be written as F(h) = \Sn=1,4 Fn(h) where Fn(h) is the Fourier transform of the nth symmerised component. To coincide with the standard setting of Pca21 we reset the equivalent positions of Bmab (2/m at 0,1/4,0) as x, y, z 1/2-x, y, 1/2+z 1/2+x, -y, z -x, -y, 1/2+z 1/2+x, y, 1/2+z -x, y, z x, -y, 1/2+z 1/2-x, -y, z -x, 1/2-y, -z 1/2+x,1/2-y, 1/2-z 1/2-x, 1/2+y, -z x, 1/2+y, 1/2-z 1/2-x, 1/2-y, 1/2 -z x,1/2-y, -z -x, 1/2+y, 1/2-z 1/2+x, 1/2+y, -z where positions 1 - 4 describe Pca21, 1 - 8 describe Bma2, positions 1 - 4 and 9 - 12 describe Pcab and positions 1 - 4 and 13 - 16 describe Pcan. The symmetrised components are antisymmetric with respect to the excluded symmetry elements of Bmab and thus are basis functions for irreducible representations of the spacegroup Bmab. Because of the nature of the irreducible representations, the Bmab and Bma2 components only contribute to h + l even reflections, (real scattering density making contributions with phases +-(i^k^) and +-(i^k+1^) respectively), and the Pcab and Pcan components only contribute to h + l odd reflections, (real scattering density making contributions with phase +-(i^k^) and +-(i^k+1^) respectively). When the structure is described using parameters pj a reasonable first approximation is Fn(h) = Fn(h)o + /Sj (delFn(h)/delpj)o Dpj where changes Dpj are relative to initial values (denoted by subscript o) which are consistent with an initial model having the parent Bmab symmetry. Thus Fn(h)o = 0 for n > 1. At this level of approximation, a parameter change only contributes to those components Fn(h) for which (delFn(h)/delpj)o ne 0 and parameter changes\DPi at parent symmetry related atoms can be combined using coefficients aij determined from irreducible representation theory so that \Dpj = \Si aij \DPi and (for any j) \Si aij (delFn(h)/delPi)o ne 0 for only a single value of n. Changing the sign of all \Dpj associated with a particular n > 1 has no first order effect on data fitting. The choice for n = 2 selects the polarity and the choice for n = 3 (or 4) selects a choice of origin. The remaining choice n = 4 (or 3) creates non equivalent structures. Let us now determine the major contributions to the various symmetrised modes. For Bmab, Bma2, Pcab and Pcan, a Co at 1/2, 1/4, 1/2 lies on sites of symmetry 2/m, m, -1 and 2 respectively. Consequently an x displacement contributes to Pcan and a y displacement to Bma2. (A z displacement of zero defines the origin along c). Changing Co to 5 coordinate contributes to Pcan. Ry and Rz rotation of the cation contributes to Pcab but Rx leaves the parent symmetry unchanged. Ordering the ligand contributes to either Pcab or Pcan depending on the assumed relationship between ligands. Packing considerations showed that for every Co site there are just three potential sites for the two counter ions and the solvent. For the parent Bmab symmetry these are described as inversion related sites of ..2 symmetry at 3/4, 0, 3/8 and 1/4, 1/2, 5/8 and a 2/m.. site at 0,1/4,1/2. The ordering of the anions across the inversion makes a major contribution to the Bma2 component. The next term in a Taylor expansion of Fn(h) is 1/2 \Sjk (del2Fn(h)/delpj delpk)o \Dpj \Dpk which is non zero when \rn(r) and the product Dpj Dpk have the same symmetry. Since \rn(r) is a sum of atom contributions pj and pk must both reference the same atom (or atoms). This implies that a check on the relative signs of specific parameters can be made by monitoring specific classes of reflections and using comparative refinement. Anomalous dispersion also creates correlations between symmetrised components associated with the same class of reflections. The structure obtained combined an ordering of the water (initiates Pcan component) and an ordering of the anions (initiates Bma2 component) and an ordering of the ligands (initiates Pcab component) and produced both sensible geometry and sensible refinement statistics for the various classes of reflections which were individually monitored. Switching the phase of any one of the modulations creates both geometric and refinement problems. A Pcan ordering of the ligands was also shown to be inappropriate. Shift over error values can be misleading when highly correlated parameters are used. High parameter correlation may be caused by pseudo symmetry, disorder, rigid body thermal motion, corefinement of local coordinates and axial systems. Refinement did converge as did shifts in isolated atom parameters derived from the parameterisation. References (1) Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia- Granda, S., Gould, R. O., Smits, J. M. M. and Smykalla, C. (1992). PATTY. The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. (2) Molecular Structure Corporation (1991-1997). teXsan. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. (3) Rae, A. D. (1996). RAELS96: A Comprehensive Constrained Least-Square Refinement Program. Australian National University, Canberra, A. C. T., Australia. (4) Brese, N. E. and O'Keeffe, M (1991) Acta Crystallogr., Section B, B47, 192-197. (5) Rae, A. D. (1975). Acta Crystallogr., Section A, A31, 560-570. (6) Rae, A. D., Thompson, J. G., Withers, R. L. and Willis, A. C. (1990) Acta Crystallogr., Section B, B46, 474-487. (7) Aroyo, M. I. and Perez-Mato, J. M. (1998) Acta Crystallogr., Section A, A54, 19-30. (8) Standard deviation of an observation of unit weight: [\Sw(|Fo| - |Fc|)2 / (No-Nv)]1/2 where No = number of observations Nv = number of variables (9) Wilson, A. J. C. (1995). Editor, "International Tables for Crystallography", Vol. C, Kluwer Academic Publishers, Dordrecht, Tables 6.1.1.1, 4.2.6.8.and 4.2.4.3. (10) Hall, S. R., King, G. S. D. & Stewart, J. M. (1995). Editors. Xtal3.4 Reference Manual. Univ. of Western Australia: Lamb, Perth, Australia. Table 1. Refinement Statistics for H1III(N2C6H16)2OH2.ClO4.NO3.C2H5OH. Class Number R(F) R(F2) wR Gof <|F2|>* 1 801 0.056 0.102 0.069 1.25 1000 2 19 0.143 0.266 0.164 2.45 155 3 458 0.084 0.144 0.095 1.40 208 4 14 0.100 0.196 0.111 1.94 266 5 30 0.076 0.123 0.083 1.36 231 1 - 5 1328 0.064 0.107 0.080 1.34 686 6 1587 0.565 0.741 0.579 1.73 20 Classes 1 - 5 Reflections with I(h) > 3\s(I(h)) 1 hkl (h+l even) reflections not in class 2 2 hk0 (h even, k odd) reflections (Absences for Bmab) 3 hkl (h+l odd) reflections not in classes 4,5 4 hk0 (h odd, k even) reflections (Absences for Pcan) 5 hk0 (h odd, k odd) reflections (Absences for Pcab) 6 Reflections with I(h) .lt. 3\s(I(h)) * Scaled relative to 1000 for Class 1. An uncorrelated 4% error in |F(h)| was included along with counting statistic error for evaluating weights as wh = 1/ (\s2(|F(h)|) + (0.04|F(h)|)2). ; _refine_ls_structure_factor_coef F _refine_ls_matrix_type full _refine_ls_weighting_scheme sigma _refine_ls_weighting_details 'w = 1/[\s^2^(Fo) + 0.0016 (Fo)^2^] ' _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _chemical_absolute_configuration ad _refine_ls_abs_structure_details ; Description of determination of absolute structure in refine_special_details. Flack parameter was also obtained. ; _refine_ls_abs_structure_Flack 0.01(7) _refine_ls_number_reflns 1328 _refine_ls_number_parameters 191 _refine_ls_number_restraints ? _refine_ls_number_constraints ? #_refine_ls_R_factor_all ? _refine_ls_R_factor_gt 0.064 #_refine_ls_wR_factor_all ? _refine_ls_wR_factor_ref 0.080 #_refine_ls_goodness_of_fit_all ? _refine_ls_goodness_of_fit_ref 1.34 _refine_ls_shift/su_max 0.9 _refine_ls_shift/su_mean 0.2 _refine_diff_density_min -0.9 _refine_diff_density_max 1.1 #--------------------------------------------------------------------------- _geom_special_details ; ? ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_1 _geom_bond_site_symmetry_2 _geom_bond_publ_flag Co1 N1 1.951(7) . . yes Co1 N2 1.949(5) . . yes Co1 N1a 1.946(9) . . yes Co1 N2a 1.948(5) . . yes Co1 O99 2.101(7) . . yes Co1 H1Co 1.440(0) . . yes N1 C1 1.510(9) . . yes N2 C2 1.494(11) . . yes C1 C2 1.515(12) . . yes C1 C3 1.547(17) . . yes C1 C4 1.545(12) . . yes C2 C5 1.586(13) . . yes C2 C6 1.541(11) . . yes N1a C1a 1.509(10) . . yes N2a C2a 1.497(11) . . yes C1a C2a 1.509(13) . . yes C1a C3a 1.544(17) . . yes C1a C4a 1.545(12) . . yes C2a C5a 1.585(11) . . yes C2a C6a 1.540(11) . . yes Cl1 O11 1.393(7) . . yes Cl1 O12 1.393(7) . . yes Cl1 O13 1.393(7) . . yes Cl1 O14 1.393(7) . . yes Cl1' O11' 1.393(7) . . yes Cl1' O12' 1.393(7) . . yes Cl1' O13' 1.393(7) . . yes Cl1' O14' 1.393(7) . . yes N3 O31 1.236(7) . . yes N3 O32 1.236(7) . . yes N3 O33 1.236(7) . . yes O4 C41 1.420(0) . . yes C41 C42 1.540(0) . . yes O4' C41' 1.420(0) . . yes C41' C42' 1.540(0) . . yes N1 H1N1 1.000 . . no N1 H2N1 1.000 . . no N2 H1N2 1.000 . . no N2 H2N2 1.000 . . no N1a H1N1a 1.000 . . no N1a H2N1a 1.000 . . no N2a H1N2a 1.000 . . no N2a H2N2a 1.000 . . no C3 H1C3 1.000 . . no C3 H2C3 1.000 . . no C3 H3C3 1.000 . . no C4 H1C4 1.000 . . no C4 H2C4 1.000 . . no C4 H3C4 1.000 . . no C5 H1C5 1.000 . . no C5 H2C5 1.000 . . no C5 H3C5 1.000 . . no C6 H1C6 1.000 . . no C6 H2C6 1.000 . . no C6 H3C6 1.000 . . no C3a H1C3a 1.000 . . no C3a H2C3a 1.000 . . no C3a H3C3a 1.000 . . no C4a H1C4a 1.000 . . no C4a H2C4a 1.000 . . no C4a H3C4a 1.000 . . no C5a H1C5a 1.000 . . no C5a H2C5a 1.000 . . no C5a H3C5a 1.000 . . no C6a H1C6a 1.000 . . no C6a H2C6a 1.000 . . no C6a H3C6a 1.000 . . no O4 H1O4 1.000 . . no C41 H1C41 1.000 . . no C41 H2C41 1.000 . . no C42 H1C42 1.000 . . no C42 H2C42 1.000 . . no C42 H3C42 1.000 . . no O4' H1O4' 1.000 . . no C41' H1C41' 1.000 . . no C41' H2C41' 1.000 . . no C42' H1C42' 1.000 . . no C42' H2C42' 1.000 . . no C42' H3C42' 1.000 . . no O99 H1O99 1.000 . . no O99 H2O99 1.000 . . no loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_2 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 Co1 N2 85.8(3) . . . yes N1 Co1 N1a 176.7(4) . . . yes N1 Co1 N2a 95.7(3) . . . yes N1 Co1 O99 89.4(4) . . . yes N1 Co1 H1Co 90.6(4) . . . yes N2 Co1 N1a 96.4(3) . . . yes N2 Co1 N2a 176.2(4) . . . yes N2 Co1 O99 93.5(3) . . . yes N2 Co1 H1Co 86.5(3) . . . yes N1a Co1 N2a 82.0(3) . . . yes N1a Co1 O99 92.9(3) . . . yes N1a Co1 H1Co 87.1(3) . . . yes N2a Co1 O99 90.0(3) . . . yes N2a Co1 H1Co 90.0(3) . . . yes O99 Co1 H1Co 180.0(7) . . . yes Co1 N1 C1 109.9(6) . . . yes Co1 N2 C2 111.1(5) . . . yes N1 C1 C2 106.5(9) . . . yes N1 C1 C3 109.4(8) . . . yes N1 C1 C4 110.5(11) . . . yes C2 C1 C3 112.9(10) . . . yes C2 C1 C4 110.5(11) . . . yes C3 C1 C4 107.1(12) . . . yes N2 C2 C1 107.6(8) . . . yes N2 C2 C5 111.2(9) . . . yes N2 C2 C6 104.4(9) . . . yes C1 C2 C5 110.4(10) . . . yes C1 C2 C6 116.1(10) . . . yes C5 C2 C6 106.9(11) . . . yes Co1 N1a C1a 114.5(6) . . . yes Co1 N2a C2a 114.1(6) . . . yes N1a C1a C2a 105.6(9) . . . yes N1a C1a C3a 108.0(8) . . . yes N1a C1a C4a 107.3(11) . . . yes C2a C1a C3a 114.4(10) . . . yes C2a C1a C4a 109.9(11) . . . yes C3a C1a C4a 111.1(12) . . . yes N2a C2a C1a 105.0(8) . . . yes N2a C2a C5a 107.0(10) . . . yes N2a C2a C6a 113.3(9) . . . yes C1a C2a C5a 107.6(10) . . . yes C1a C2a C6a 112.6(11) . . . yes C5a C2a C6a 111.0(11) . . . yes Co1 O99 O32 117.7(4) . . . yes Co1 O99 O4 135.4(5) . . . yes Co1 O99 O4' 135.8(5) . . . yes O32 O99 O4 106.8(6) . . . yes O32 O99 O4' 100.0(5) . . . yes O33 O99 O4 120.9(7) . . . yes O33 O99 O4' 128.7(5) . . . yes O4 C41 C42 109.5 . . . no O4' C41' C42' 109.5 . . . no O11 Cl1 O12 109.5 . . . no O11' Cl1' O12' 109.5 . . . no Co1 N1 H1N1 109.4 . . . no Co1 N1 H2N1 109.4 . . . no C1 N1 H1N1 109.4 . . . no C1 N1 H2N1 109.4 . . . no H1N1 N1 H2N1 109.5 . . . no Co1 N2 H1N2 109.1 . . . no Co1 N2 H2N2 109.1 . . . no C2 N2 H1N2 109.1 . . . no C2 N2 H2N2 109.1 . . . no H1N2 N2 H2N2 109.5 . . . no Co1 N1a H1N1a 108.2 . . . no Co1 N1a H2N1a 108.2 . . . no C1a N1a H1N1a 108.2 . . . no C1a N1a H2N1a 108.2 . . . no Co1 N2a H1N2a 108.3 . . . no Co1 N2a H2N2a 108.3 . . . no C2a N2a H1N2a 108.3 . . . no C2a N2a H2N2a 108.3 . . . no H1N2a N2a H2N2a 109.5 . . . no C1 C3 H1C3 109.5 . . . no C1 C3 H2C3 109.5 . . . no C1 C3 H3C3 109.5 . . . no H1C3 C3 H2C3 109.5 . . . no H1C3 C3 H3C3 109.5 . . . no H2C3 C3 H3C3 109.5 . . . no C1 C4 H1C4 109.5 . . . no C1 C4 H2C4 109.5 . . . no C1 C4 H3C4 109.5 . . . no H1C4 C4 H2C4 109.5 . . . no H1C4 C4 H3C4 109.5 . . . no H2C4 C4 H3C4 109.5 . . . no C2 C5 H1C5 109.5 . . . no C2 C5 H2C5 109.5 . . . no C2 C5 H3C5 109.5 . . . no H1C5 C5 H2C5 109.5 . . . no H1C5 C5 H3C5 109.5 . . . no H2C5 C5 H3C5 109.5 . . . no C2 C6 H1C6 109.5 . . . no C2 C6 H2C6 109.5 . . . no C2 C6 H3C6 109.5 . . . no H1C6 C6 H2C6 109.5 . . . no H1C6 C6 H3C6 109.5 . . . no H2C6 C6 H3C6 109.5 . . . no C1a C3a H1C3a 109.5 . . . no C1a C3a H2C3a 109.5 . . . no C1a C3a H3C3a 109.5 . . . no H1C3a C3a H2C3a 109.5 . . . no H1C3a C3a H3C3a 109.5 . . . no H2C3a C3a H3C3a 109.5 . . . no C1a C4a H1C4a 109.5 . . . no C1a C4a H2C4a 109.5 . . . no C1a C4a H3C4a 109.5 . . . no H1C4a C4a H2C4a 109.5 . . . no H1C4a C4a H3C4a 109.5 . . . no H2C4a C4a H3C4a 109.5 . . . no C2a C5a H1C5a 109.5 . . . no C2a C5a H2C5a 109.5 . . . no C2a C5a H3C5a 109.5 . . . no H1C5a C5a H2C5a 109.5 . . . no H1C5a C5a H3C5a 109.5 . . . no H2C5a C5a H3C5a 109.5 . . . no C2a C6a H1C6a 109.5 . . . no C2a C6a H2C6a 109.5 . . . no C2a C6a H3C6a 109.5 . . . no H1C6a C6a H2C6a 109.5 . . . no H1C6a C6a H3C6a 109.5 . . . no H2C6a C6a H3C6a 109.5 . . . no Co1 O99 H1O99 116.4 . . . no Co1 O99 H2O99 134.1 . . . no O4 C41 H1C41 109.5 . . . no O4 C41 H2C41 109.5 . . . no C42 C41 H1C41 109.5 . . . no C42 C41 H2C41 109.5 . . . no H1C41 C41 H2C41 109.5 . . . no C41 C42 H1C42 109.5 . . . no C41 C42 H2C42 109.5 . . . no C41 C42 H3C42 109.5 . . . no H1C42 C42 H2C42 109.5 . . . no H1C42 C42 H3C42 109.5 . . . no O4' C41' H1C41' 109.5 . . . no O4' C41' H2C41' 109.5 . . . no C42' C41' H1C41' 109.5 . . . no C42' C41' H2C41' 109.5 . . . no H1C41' C41' H2C41' 109.5 . . . no H2C42 C42 H3C42 109.5 . . . no C41' C42' H1C42' 109.5 . . . no C41' C42' H2C42' 109.5 . . . no C41' C42' H3C42' 109.5 . . . no H1C42' C42' H2C42' 109.5 . . . no H1C42' C42' H3C42' 109.5 . . . no H2C42' C42' H3C42' 109.5 . . . no loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C2 C1 N1 Co1 39.4(11) . . . . no C3 C1 N1 Co1 161.7(9) . . . . no C4 C1 N1 Co1 -80.6(11) . . . . no C1 C2 N2 Co1 34.0(10) . . . . no C5 C2 N2 Co1 -87.1(10) . . . . no C6 C2 N2 Co1 158.0(8) . . . . no N2 C2 C1 N1 -46.8(11) . . . . no C5 C2 C1 N1 74.8(11) . . . . no C6 C2 C1 N1 -163.4(11) . . . . no N2 C2 C1 C3 -166.9(9) . . . . no C5 C2 C1 C3 -45.3(13) . . . . no C6 C2 C1 C3 76.5(13) . . . . no N2 C2 C1 C4 73.2(11) . . . . no C5 C2 C1 C4 -165.2(11) . . . . no C6 C2 C1 C4 -43.4(14) . . . . no C2a C1a N1a Co1 -34.3(11) . . . . no C3a C1a N1a Co1 -157.2(10) . . . . no C4a C1a N1a Co1 82.9(11) . . . . no C1a C2a N2a Co1 -39.9(11) . . . . no C5a C2a N2a Co1 74.2(11) . . . . no C6a C2a N2a Co1 -163.1(9) . . . . no N2a C2a C1a N1a 44.8(11) . . . . no C5a C2a C1a N1a -68.9(12) . . . . no C6a C2a C1a N1a 168.5(11) . . . . no N2a C2a C1a C3a 163.5(9) . . . . no C5a C2a C1a C3a 49.8(13) . . . . no C6a C2a C1a C3a -72.8(12) . . . . no N2a C2a C1a C4a -70.7(12) . . . . no C5a C2a C1a C4a 175.6(11) . . . . no C6a C2a C1a C4a 53.1(14) . . . . no #===END