Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2004

Rotor-like ZnO by epitaxial growth under hydrothermal conditions

X. P. Gao,*^a Z. F. Zheng,^a H. Y. Zhu,^b G. L. Pan,^a J. L. Bao,^a F. Wu,^{a, c} and D. Y. Song^a

^a Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China. Fax: 86-22-23502604; Tel: 86-22-23500876; E-mail: <u>xpgao@nankai.edu.cn</u>

^b Electron Microscope Unit and School of Chemistry, The University of Sydney, NSW 2006, Australia Fax: 61 2 9351 7682; Email: <u>h.zhu@emu.usyd.edu.au</u>

^c School of Chemical Engineering and Environmental, Beijing Institute of Technology, Beijing 100081, China

Fig. S1 Bright field TEM images of the rod-like (a) and rotor-like ZnO (b).

Fig.S2 TEM images of the rotor-like ZnO in the bright field (a) and dark field (b)

- # Supplementary Material (ESI) for Chemical Communications
- # This journal is © The Royal Society of Chemistry 2004

Fig.S3 SEM image of the rod-like ZnO mixed with $Zn(OH)_4^{2-}$ solution before the hydrothermal reaction, indicating the fast nucleation on the rod-like ZnO occurs prior to the hydrothermal reaction.