Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004

## Supplementary data

(i) Preparation of regionegular poly-(3-hexylthiophene)-copoly-({thiophen-3-yl}hexan-1-ol), **3**:-monomer **1** (1.0 g, 2.9 mmol), monomer **2** (4.76 g, 14.6 mmol) and anhydrous thf  $(50 \text{ cm}^3)$  were placed in a 100 cm<sup>3</sup> flame-dried round bottomed flask. Methylmagnesium bromide (17.5 cm<sup>3</sup> of a 1.0 M solution in Bu<sub>2</sub>O; 17.5 mmol) was added, and the solution was stirred for 5 min., and then heated to reflux for 2 h. After this time, the solution was cooled to room temperature, and [NiCl<sub>2</sub>(dppp)] (0.19 g, 2 mol%) was added in one portion. More thf (20 cm<sup>3</sup>) was added, and the mixture was again brought to reflux. After 16 h., it was allowed to cool to room temperature, and was then quenched by pouring into MeOH ( $400 \text{ cm}^3$ ). The precipitated polymer was filtered into a Soxhlet thimble, and sequentially extracted with MeOH, hexanes, then CHCl<sub>3</sub>. The CHCl<sub>3</sub> fraction was evaporated to dryness, and characterised. Yield 2.04 g, 69%. Microanalyses: Found: C = 70.85, H = 8.12 %. Calc. for copolymer 3 (1:8.5 1:2): C = 71.51, H = 8.40 %. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 7.00 (s, head-to-tail thienyl H), 3.67 (t, CH<sub>2</sub>OH), 2.82 (t, CH<sub>2</sub>thienyl), 1.7–1.2 (m's,  $-CH_2$ –), 0.94 (t,  $-CH_3$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta = 140.3, 134.2, 130.9, 129.0$  (thienyl C), 63.4 (CH<sub>2</sub>OH), 33.2, 32.3, 30.9, 29.9, 29.8, 29.6, 29.3, 26.0, 23.1 (various -CH<sub>2</sub>-), 14.5 (-CH<sub>3</sub>). GPC (PL-ELS 1000; PS calibration, thf, 1 cm<sup>3</sup> min<sup>-1</sup>, 40 °C):  $M_w$  17,500,  $M_n$  14,330, PD 1.22.

(ii) Biotin functionalisation of regioregular poly–(3-hexylthiophene)–copoly– ({thiophen-3-yl}-hexan-1-ol):– Polymer **3** (0.100 g; *ca* 0.063 mmol –OH equiv.) was dissolved in dry CHCl<sub>3</sub> (15 cm<sup>3</sup>) and DCC (0.143 g, 0.69 mmol), DMAP (0.02 g, 0.16 mmol) and biotin (0.100 g, 0.41 mmol) were added. The mixture was stirred at room temperature for 48 hours, and was then partitioned between CHCl<sub>3</sub> and water (4 x 50 Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004

cm<sup>3</sup>). The CHCl<sub>3</sub> fractions were combined, dried over MgSO<sub>4</sub>, filtered and the solvent removed to yield the polymer as a purple solid. The polymer was Soxhlet extracted with methanol for 16 h. <sup>1</sup>H NMR (CDCl<sub>3</sub> 250 MHz):  $\delta$  7.00 (s, 1H, H4), 4.47, 4.29 (m's, 1H each, biotin -CHCH-), 4.10 (t, 2H, CH<sub>2</sub>OC(O)), 3.67 (overlapping m, unreacted CH<sub>2</sub>OH, and biotin CHS), 3.51 (m, 2H, biotin CH<sub>2</sub>S), 2.80 (CH<sub>2</sub>thienyl), 2.30 (t, 2H, CH<sub>2</sub>C(O)), 1.7-1.2 (m's), 0.94 (t, CH<sub>3</sub>).

(iii) The reaction is not quantitative presumably owing to the poor solubility of biotin in CHCl<sub>3</sub>, but reactions conducted in CHCl<sub>3</sub>/dmf mixtures were completely unsuccessful.



Figure (Left) Polymer **4** in 1:1 CHCl<sub>3</sub>:dmso; (centre) after addition of 1 drop aqueous buffer containing BSA as described in text; (right) after addition of aqueous buffer containing avidin as described in text. Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004