Supporting Information

Title: Reducing ability of supramolecular C₆₀ dianion toward C=O, C=C and N-N bonds

Authors: Shin-ichi Takekuma, Hideko Takekuma, and Zen-ichi Yoshida*

Department of Applied Chemistry,

Faculty of Science and Engineering,

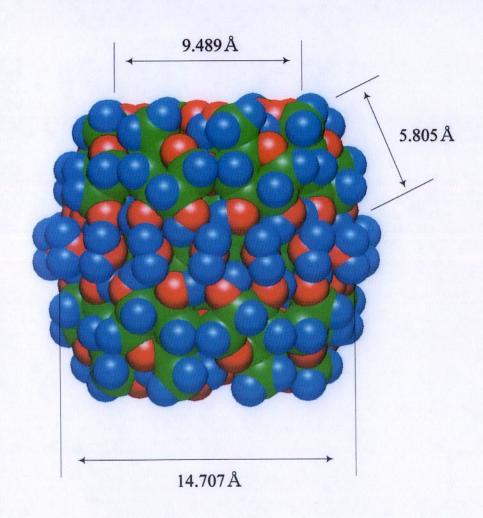
Kinki University,

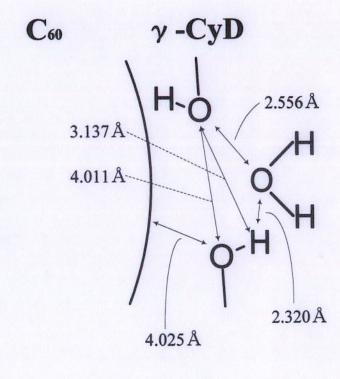
3-4-1, Kowakae, Higashi-Osaka 577-8502, Japan

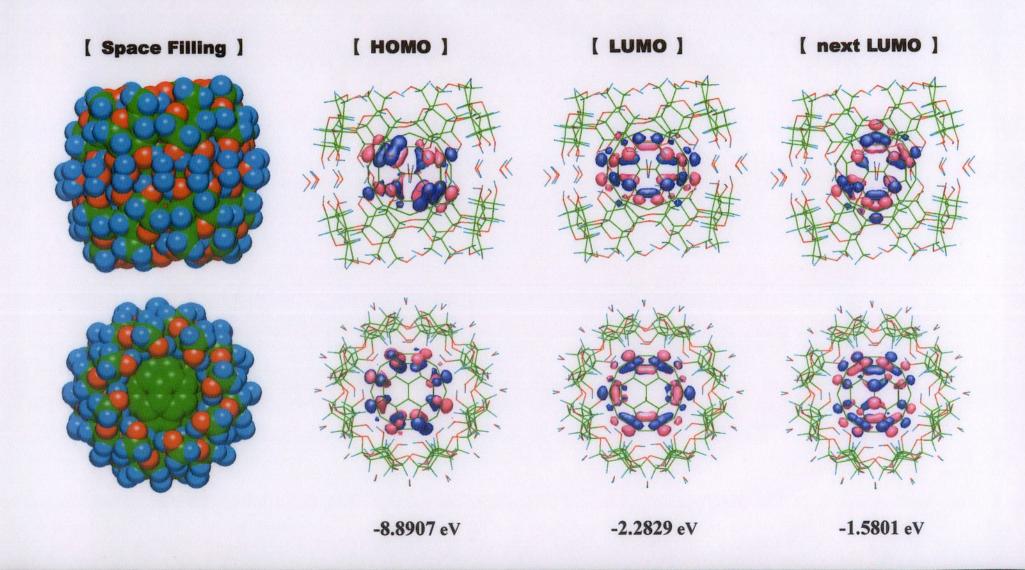
Fax: (+81) 6-6727-4301

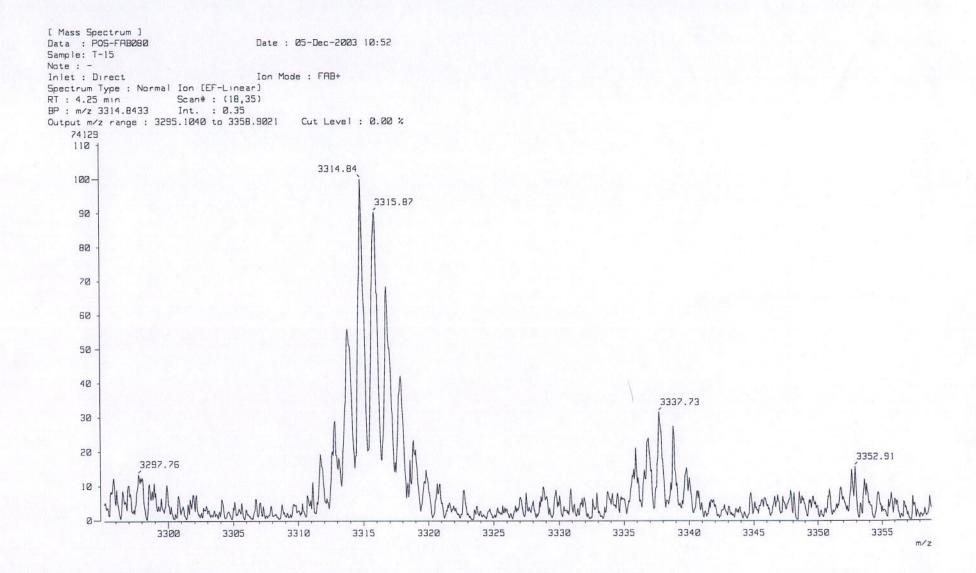
E-mail: yoshida@chem.kindai.ac.jp

- 1. MOZYME (AM1) analysis on structure of γ -cyclodextrin-bicapped C₆₀·16H₂O.
- 2. FAB-MS data of γ -cyclodextrin-bicapped C₆₀ (1).
- 3. Experimental data on efficiency of **2** in ketone reduction: Ketone was reacted with **2** (generated from **1** and NaBH₄) in DMSO H₂O (9:1, v/v) at 25 °C for 1 h. The reaction mixture was diluted with water and extracted with diethyl ether (twice). The ether layer was washed with water and dried over MgSO₄. The control experiment was made by using NaBH₄ instead of **2** under the same condition. The product (GC-MS) and yield (GLC) are shown in the Table.


Heat of Formation, Heat of Complexation, and HOMO LUMO Obtained by MOZYME (AM1) Calculation


KEYWORD : BFGS PRECISE GEO-OK AM1 ALLBONDS SCFCRT=10-10 PL


EIGEN VECTORS ALLVEC T=11D


3	Heat of Formation (kcal/mol)	Gradient Norm	HOMO (eV)	LUMO (eV)	HOMO-LUMO gap (eV)	next LUMO (eV)
H ₂ O	-59.247	1.317				
γ-CyD	-1667.737	7.880				
C60	973.004	63.002	-9.6204	-2.9681	6.6523	
C60 / 7-CyD	-893.955	863.693	-9.6827	-3.0213	6.6614	-2.3312
Bicapped C60	-2768.469	255.948	-9.5630	-3.0334	6.5296	-2.3128
Bicapped C60 • 16H2O	-3760.248	421.820	-8.8907	-2.2829	6.6078	-1.5801

Complex	Δ H _f (kcal/mol)	Σ Δ H _f (kcal/mol)	- △ Hcomplex (kcal/mol)	
C60 / γ-CyD	-893.955	-694.73	199.22	Stabilization
Bicapped C60	-2768.469	-2362.47	406.00	Stabilization
Bicapped C60 • 16H2O	-3760.248	-3310.42	449.83	Stabilization

[Theoretical Ion Distribution] Page: 1

Molecular Formula : C156 H161 O80 (m/z 3313.8530, MW 3315.9463, U.S. 76.5) Base Peak : 3314.8564, Averaged MW : 3315.9503(a), 3315.9510(w)

m/z	INT.	
3313.8530	55.8749	******
3314.8564	100.0000	**************
3315.8596	97.9074	**************
3316.8626	68.4576	*******
3317.8656	38.0002	*********
3318.8685	17.7169	*****
3319.8713	7.1837	***
3320.8741	2.5935	**
3321.8768	0.8479	
3322.8795	0.2542	
3323.8822	0.0706	
3324.8849	0.0183	
3325.8876	0.0045	
3326.8902	0.0010	
3327.8928	0.0002	

[Elemental Composition] Page: 1

Data : POS-FAB081 Date : 05-Dec-2003 11:42

Sample: T-15 Note : -

Inlet: Direct Ion Mode: FAB+

RT: 1.34 min Scan#: (2,16)+(43,65)+(92,105)

Elements : C 160/100, H 200/100, O 85/75

Mass Tolerance : 30mmu

Unsaturation (U.S.): -0.5 - 100.0

[Supporting Information. Z. Yoshida et. al.]

Table. Ketone reduction of γ -cyclodextrin-bicapped C₆₀ dianion (2) or NaBH₄^a

$$\begin{array}{c} \begin{array}{c} \text{O} \\ \text{II} \\ \text{R-C-R'} \end{array} & \begin{array}{c} 2 \text{ (or NaBH}_4) \\ \hline \\ \text{DMSO (10\% H}_2\text{O), 25 }^{\circ}\text{C} \end{array} \end{array} \longrightarrow \begin{array}{c} \begin{array}{c} \text{OH} \\ \text{I} \\ \text{R-CH-R'} \end{array}$$

Entry	Substrate	Product ^b	Yield ^c (%)	
1	O C-Me	OH CH-Me	100 (8)	
1	C-IME	CH-Me	$(32.3)^{d}$	
2	Ме———— О ——Ё-Ме	Me—OH—CH-Me	100 (6)	
2			$(28.4)^{d}$	
2	O	OH CH-Me	100 (8)	
3			$(52.1)^{d}$	
4	O C-Me	OH CH-Me	100 (8)	
4			$(42.5)^{d}$	
5	Me	Me	100(3)	
3		OH	$(33.8)^{d}$	

a. Condition of parallel experiment: substrate (8-21 $\,\mu$ mol), reducing agent (1) 2 generated from 1 \cdot 24H₂O (2.7 $\,\mu$ mol) and NaBH₄ (131.5 $\,\mu$ mol), and (2) NaBH₄ (131.5 $\,\mu$ mol) in the absence of 1 at 25 $^{\circ}$ C, for 1 h.

b. Product is only the corresponding carbinol. No pinacole formation is observed.

c. Determined by GLC analysis: the value in parenthesis shows TOF (h⁻¹).

d. Control experiment with NaBH4.