Supporting Information

Revisiting the Maitland-Japp Reaction: One Pot, Multi-Component Construction of Highly Substituted Tetrahydropyan-4-ones.

Paul A. Clarke,* William H. C. Martin, Jason M. Hargreaves, Claire Wilson and Alexander J. Blake

1. General procedure for the TiCl_{4} promoted Maitland-Japp reaction.
2. General procedure for the $\mathrm{Yb}(\mathrm{OTf})_{3}$ promoted Maitland-Japp reaction.
3. Representative characterisation data, $\mathbf{5 b}, \mathbf{6 b}, \mathbf{5 c}, \mathbf{6 c}, \mathbf{8 i}$ and $\mathbf{9 b}$.
4. Determination of the enantiomeric excess $\mathbf{8 i}$ and $\mathbf{9 b}$.
5. X-ray data. CIF files of $\mathbf{5 b}$ and $\mathbf{6 b}$.
6. Chiral shift ${ }^{1} \mathrm{H}$ NMR of $\mathbf{8 i}$ and $\mathbf{9 b}$.

General procedure for the $\mathbf{T i C l}_{4}$ promoted Maitland-Japp reaction

To a solution of aldehyde (1.00 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added titanium tetrachloride ($111 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$). The black solution was stirred for 2 min and then Chan's diene $(570 \mu \mathrm{~L}, 2.00 \mathrm{mmol})$ was added over a 1 min period. The black solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then trifluoroacetic acid ($308 \mu \mathrm{~L} 4 \mathrm{mmol}$) was added. After 2 min the second aldehyde (1.20 mmol) was added and the solution was allowed to warm to room temperature over a 5 min period. The black solution was stirred at room temperature for 2 h and was then diluted with EtOAc (40 $\mathrm{mL})$ and washed with $5 \% \mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL}), 5 \%$ sodium metabisulfite $(3 \times 30 \mathrm{~mL})$ and brine (2 $\times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Purification by flash column chromatography (1:19 EtOAc-petroleum. ether) gave pyran products $\mathbf{5}$ and 6.

General procedure for the $\mathbf{Y b}\left(\mathrm{OTf}_{3}\right)_{3}$ promoted Maitland-Japp reaction

To a suspension of ytterbium (III) triflate ($620 \mathrm{mg}, 1.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added aldehyde (1 mmol) followed by Chan's diene ($570 \mu \mathrm{~L}, 2.00 \mathrm{mmol}$). The white mixture was
stirred at $-78{ }^{\circ} \mathrm{C}$ for 40 min and then trifluoroacetic acid ($308 \mu \mathrm{~L}, 4 \mathrm{mmol}$) was added followed by the second aldehyde (1.2 mmol). The mixture was warmed to room temperature over 5 min and then stirred at room temperature for 2 h . The mixture was then diluted with EtOAc (40 mL) and washed with $5 \% \mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Purification by flash column chromatography (1:19 EtOAc-petroleum. ether) gave pyran products 5 and 6 , which were spectroscopically identical to those made via the TiCl_{4} method.

5b. white solid $\mathrm{mp} .133-135^{\circ} \mathrm{C}$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}: 2953,2921,1747,1717,1496,1455,1274,1067$, 757, 699; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.50-7.30(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.13(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}, \mathrm{H}-2)$, $4.95(1 \mathrm{H}, \mathrm{dd}, J=11.3,3.0 \mathrm{~Hz}, \mathrm{H}-6), 3.77(1 \mathrm{H}, \mathrm{dd}, J=10.6,0.8 \mathrm{~Hz}, \mathrm{H}-3), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.86$ (1H, dd, $J=14.3,3.0 \mathrm{~Hz}, \mathrm{H}-5), 2.79(1 \mathrm{H}, \mathrm{ddd}, J=14.3,11.2,0.8 \mathrm{~Hz}, \mathrm{H}-5) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (67.8 MHz; CDCl_{3}) $\delta 201.1$ (s), 167.8 (s), 139.9 (s), 138.6 (s$), 128.8$ (d), 128.8 (d), 128.6 (d), 128.1 (d), 126.8 (d), 125.6 (d), 81.0 (d), 78.9 (d), 64.6 (d), 52.1 (q), 48.9 (t) ppm; m/z (CI+) $310\left(62 \%, \mathrm{M}^{+}\right)$, 293 (100 \%, $\mathrm{M}^{+}-\mathrm{OH}$); HRMS: found (M^{+}), 310.1195. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\left(\mathrm{M}^{+}\right)$310.1205; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$: C, 73.53; H, 5.85. Found C, 73.22; H 5.95%.

6b. white solid $\mathrm{mp}: 118-120^{\circ} \mathrm{C}$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2955,2918,2849,1745,1662,1443,1269,1219$, 1063,$698 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 12.38(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.57-7.28(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.80(1 \mathrm{H}, \mathrm{d}, J$ $=1.0 \mathrm{~Hz}, \mathrm{H} 2), 4.59(1 \mathrm{H}, \mathrm{dd}, J=10.8,3.9 \mathrm{~Hz}, \mathrm{H}-6), 3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.73(1 \mathrm{H}, \mathrm{ddd}, J=18.1$, 10.8, 1.0 Hz, H-5), $2.60(1 \mathrm{H}, \mathrm{dd}, J=18.1,3.9 \mathrm{~Hz}, \mathrm{H}-5) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ
$171.2,165.8,141.0,140.8,128.8,128.4,128.0,127.9,126.9,126.0,98.7,73.7,68.3,52.2,35.6$, $29.8 \mathrm{ppm} ; \mathrm{m} / \mathrm{z}(\mathrm{CI}+) 310\left(50 \%, \mathrm{M}^{+}\right)$, 279 ($10 \% \mathrm{M}^{+}-\mathrm{OMe}$), 233 (77 \%, $\left.\mathrm{M}^{+}-\mathrm{Ph}\right)$; HRMS: found $\left(\mathrm{M}^{+}\right), 310.1205 . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\left(\mathrm{M}^{+}\right)$, 310.1205; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}: \mathrm{C}, 73.53$; $\mathrm{H}, 5.85$. Found C, 73.32; H 5.75 \%.

5c. oil $v_{\text {max }}$ (film) 2961, 2876, 1747, 1660, 1344, 1268, 1222, 1130, 1038, $913 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 5.75(1 \mathrm{H}$, dddd, $J=17.1,10.3,7.3,6.4 \mathrm{~Hz}, \mathrm{H}-12), 4.98(1 \mathrm{H}, \mathrm{ddt}, J=17.1,3.4,2.0$ $\mathrm{Hz}, \mathrm{H}-13$ trans $), 4.93(1 \mathrm{H}, \mathrm{ddt}, J=10.3,3.4,1.5 \mathrm{~Hz}, \mathrm{H}-13$ cis $), 3.80(1 \mathrm{H}, \mathrm{ddd}, J=10.8,9.3,2.9 \mathrm{~Hz}$, $\mathrm{H}-2), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.28(1 \mathrm{H}, \mathrm{ddd}, J=11.7,6.8,2.0 \mathrm{~Hz}, \mathrm{H}-6), 3.19(1 \mathrm{H}, \mathrm{dd}, J=10.8,1.0 \mathrm{~Hz}$, H-3), 2.45 ($1 \mathrm{H}, \mathrm{dd}, J=14.2,2.0 \mathrm{~Hz}, \mathrm{H}-5 e q), 2.23(1 \mathrm{H}, \mathrm{ddd}, J=14.2,11.7,1.0 \mathrm{~Hz}, \mathrm{H}-5 a x), 2.22$ (2H, m, H-10), $1.76(1 \mathrm{H}$, octet, $J=6.8 \mathrm{~Hz}, \mathrm{H}-7), 1.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 0.99(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-8$ or H-9), $0.90(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-8$ or $\mathrm{H}-9) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (67.8 MHz; CDCl_{3}) 202.7, 168.6, $137.6,115.1,81.7,77.4,63.1,52.0,44.6,34.1,33.4,29.5,18.2,18.1 \mathrm{ppm} ;$; $/ \mathrm{z}(\mathrm{ES}+) 318$ (68%, $\left.\mathrm{M}^{+}+\mathrm{Na}+\mathrm{CH}_{3} \mathrm{CN}\right), 277\left(100 \%, \mathrm{M}^{+}+\mathrm{Na}\right), 171\left(98 \%, \mathrm{M}^{+}+\mathrm{H}_{-} \mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}\right)$; HRMS: found $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, 277.1425. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 277.1416.

6c. oil $v_{\text {max }}$ (film) 2956, 1748, 1662, 1623, 1443, 1365, 1270, 1221, 1067, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 12.04(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.85(1 \mathrm{H}, \mathrm{ddt}, J=17.2,10.3,6.8 \mathrm{~Hz}, \mathrm{H}-12), 5.07(1 \mathrm{H}, \mathrm{ddt}, J=$ 17.2, 1.5, $1.5 \mathrm{~Hz}, \mathrm{H}-13$ cis), 4.97 ($1 \mathrm{H}, \mathrm{ddt}, J=10.3,1.5,1.5 \mathrm{~Hz}, \mathrm{H}-13$ trans $), 4.46$ ($1 \mathrm{H}, \mathrm{d}, J=6.8$ $\mathrm{Hz}, \mathrm{H}-2), 3.75$ (3H, s, OMe), 3.46 ($1 \mathrm{H}, \mathrm{ddd}, J=12.7,7.3,5.4 \mathrm{~Hz}, \mathrm{H}-6$), 2.22 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5+\mathrm{H}-10$), $1.69(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7+\mathrm{H}-11), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-8$ or H-9), $0.92(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-8$ or H-
9) ppm; ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.0(\mathrm{~s}), 170.1$ (s), 138.3 (d), 114.5 (t), 101.1 (s$), 70.9(\mathrm{~d}), 70.5(\mathrm{~d}), 51.4(\mathrm{q}), 33.1(\mathrm{~d}), 32.1(\mathrm{t}), 31.8(\mathrm{t}), 30.2(\mathrm{t}), 18.7(\mathrm{q}), 18.2(\mathrm{q}) \mathrm{ppm} ;$ $\mathrm{m} / \mathrm{z}(\mathrm{ES}+) 318\left(48 \%, \mathrm{M}^{+}+\mathrm{Na}^{+} \mathrm{CH}_{3} \mathrm{CN}\right)$, $277\left(100 \%, \mathrm{M}^{+}+\mathrm{Na}\right), 255\left(12 \%, \mathrm{M}^{+}+\mathrm{H}\right), 171(98 \%$, $\left.\mathrm{M}^{+}+\mathrm{H}-\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}\right)$; HRMS: found $\left(\mathrm{M}^{+}+\mathrm{Na}+\mathrm{CH}_{3} \mathrm{CN}\right)$, 318.1681. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\left(\mathrm{M}^{+}+\mathrm{Na}+\mathrm{CH}_{3} \mathrm{CN}\right) 318.1674$.

8i. white solid mp. $88-90^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}\left(\mathrm{CHCl}_{3}, \mathrm{c}=1\right)+4.5 ; v_{\text {max }}($ film $) 2978,2932,1740,1714,1369$, $1288,1127, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.43-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.84(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}$, $\mathrm{H}-2), 4.00(1 \mathrm{H}, \mathrm{ddq}, J=10.8,5.9,2.9 \mathrm{~Hz}, \mathrm{H}-6), 3.47(1 \mathrm{H}, \mathrm{dd}, J=10.8,1.0 \mathrm{~Hz}, \mathrm{H}-3), 2.53(1 \mathrm{H}, \mathrm{dd}$, $J=14.6,2.9 \mathrm{~Hz}, \mathrm{H}-5 e q), 2.40(1 \mathrm{H}, \mathrm{ddd}, J=14.6,10.8,1.0 \mathrm{~Hz}, \mathrm{H}-5 a x), 1.29\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.38(3 \mathrm{H}$, d, $J=5.9 \mathrm{~Hz}, \mathrm{H}-7$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 202.3$ (s), 166.6 (s), 138.7 (s), 128.7 (d), 128.6 (d), 127.2 (d), 82.0 (s), 81.1 (d), 73.8 (d), 64.9 (d), 48.7 (t), 27.9 (q), 22.2 (q) ppm; m/z (ES+) $354\left(100 \%, \mathrm{M}^{+}+\mathrm{Na}+\mathrm{CH}_{3} \mathrm{CN}\right)$, $313\left(82 \%, \mathrm{M}^{+}+\mathrm{Na}\right)$; HRMS: found $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, 313.1428. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 313.1416.

9b. white solid mp. $[\alpha]_{\mathrm{D}}\left(\mathrm{CHCl}_{3}, \mathrm{c}=1\right)-46.8$; $v_{\max }(\mathrm{film}) 3031,2963,1717,1347,1252,1153$, 1065 5.72, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.31-7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.51(1 \mathrm{H}, \mathrm{dd}, J=11.5,2.6$ $\mathrm{Hz}, \mathrm{H}-6), 3.39$ ($1 \mathrm{H}, \mathrm{ddd}, J=11.5,6.0,2.6 \mathrm{~Hz}, \mathrm{H}-2$), 2.53 ($1 \mathrm{H}, \mathrm{ddd}, J=14.5,2.6,2.1 \mathrm{~Hz}, \mathrm{H}-5 e q$), $2.40(1 \mathrm{H}, \mathrm{dd}, J=14.5,11.5 \mathrm{~Hz}, \mathrm{H}-5 a x), 2.35(1 \mathrm{H}, \mathrm{ddd}, J=14.1,2.6,2.1 \mathrm{~Hz}, \mathrm{H}-2 e q), 2.28(1 \mathrm{H}, \mathrm{dd}$, $J=14.1,11.5 \mathrm{~Hz}, \mathrm{H}-2 a x), 1.81(1 \mathrm{H}$, octet, $J=6.8 \mathrm{~Hz}, \mathrm{H}-13), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-14$ or H15), $0.88(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-14$ or $\mathrm{H}-15) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 207.6(\mathrm{~s}), 141.1$
(s$), 128.5$ (d), 127.8 (d), 125.4 (d), 81.9 (d), 78.2 (t), 49.7 (t), 44.6 (t), 33.2 (d), 18.2 (q), 17.9 (q) ppm; m/z (CI+) $218\left(59 \%, \mathrm{M}^{+}\right), 175\left(16 \%, \mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 77(31 \%, \mathrm{Ph})$; HRMS: found $\left(\mathrm{M}^{+}\right)$, 218.1307. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\left(\mathrm{M}^{+}\right)$218.1307.

Determination of the enantiomeric excess 8 i and 9b

${ }^{1} \mathrm{H}$ NMR shift reagent experiment: $\mathbf{8 i}(1 \mathrm{mg})$ in $\mathrm{CDCl}_{3}(0.45 \mathrm{ml})$ with $50 \mathrm{~mol} \%(-) \mathrm{Eu}(\mathrm{hfc})_{3}$ at 500 MHz. ${ }^{1} \mathrm{H}$ NMR shift reagent experiment: $9 \mathbf{~} \mathbf{(1 \mathrm { mg }) \text { in } \mathrm { CDCl } _ { 3 } (0 . 4 5 \mathrm { ml }) \text { with } 1 5 \mathrm { mol } \% (-) \mathrm { Eu } (\mathrm { hfc }) _ { 3 })}$ at 400 MHz . See following spectra.

Notes on X-ray crystal data

Diffraction data were acquired on a Bruker SMART1000 (5b) or a Bruker SMART APEX (6b) CCD area detector diffractometer equipped with an Oxford Cryosystems open-flow cryostat operating at 150 K . The structures were solved by direct methods and refined by full-matrix leastsquares on F^{2}.

Crystal data for $\mathbf{5 b} . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}, M=310.33$, monoclinic, $a=13.0132(10), b=8.6004(7)$, $c=$ 14.1620(11) \AA, $\beta=91.558(2)^{\circ}, V=1584.4(2) \AA^{3}, T=150(2) \mathrm{K}, Z=4, D_{\mathrm{x}}=1.301 \mathrm{~g} \mathrm{~cm}^{-3}$. Final R_{1} $[2746 F>4 \sigma(F)]=0.0375, w R_{2}\left[\right.$ all $\left.3656 F^{2}\right]=0.105$.

Crystal data for $\mathbf{6 b} . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}, M=310.33$, triclinic, $a=5.5429(5), b=9.5351(8), c=15.1955(13)$ $\AA ́, \alpha=82.937(2), \beta=85.273(2), \gamma=77.190(2)^{\circ}, V=775.9(2) \AA^{3}, T=150(2) K, Z=2, D_{\mathrm{x}}=1.328 \mathrm{~g}$ cm^{-3}. Final $R_{1}[2913 F>4 \sigma(F)]=0.0401, w R_{2}\left[\right.$ all $\left.3507 F^{2}\right]=0.111$.

