Supplementary Information An unprecedented process involving normal and redox transmetallation reactions between Hg and Pt affording the unexpected $K[Pt^{IV}{}_2\{CH_2C(O)Me\}_6(\mu\text{--}Cl)_3]$ complex: the key role of X-ray powder diffraction in unravelling its nature and structure José Vicente,* Aurelia Arcas, Jesús M. Fernández-Hernández, Angelo Sironi, and Norberto Masciocchi ## Experimental details for the preparation of $$\begin{array}{c|c} & O & O & O \\ \hline & CI & Pt & O \\ \hline & CI & Pt Pt$$ ¹H NMR spectrum of the 1:1 reaction mixture after 15 min in d⁶-acetone Synthesis of K[Pt₂{CH₂C(O)Me}₆(μ -Cl)₃] (1). To a solution of Zeise's salt, $K[PtCl_3(CH_2=CH_2)]$ (250 mg, 0.678 mmol), in acetone (10 mL), $[Hg\{CH_2C(O)Me\}_2]$ (430 mg, 1.366 mmol) was added. The reaction mixture was stirred for 20 h at room temperature and the solvent was removed. The grey solid obtained was washed with CH₂Cl₂ (3 x 5 mL) and the residue was suspended in MeCN (10 mL) and refluxed for 40 min. The hot suspension was filtered through Celite and the yellow filtrate was concentrated until a solid precipitated. Addition of Et₂O (5 mL) gave more precipitate. The suspension was filtered off and the solid was recrystallized from MeCN/Et₂O to give 1 as a colourless microcrystalline solid. Yield: 102 mg, 0.253 mmol, 74%. Mp: 200 °C (dec). $\Lambda_{\rm M}$ (acetone, 5 x 10⁻⁴ M): 106 Ω^{-1} cm² mol⁻¹. IR (cm⁻¹): v(C=O) 1689, ν(Pt-Cl) 245. ¹H NMR (400 MHz, d_6 -acetone): δ 3.20 (s, 2 H, CH₂, ${}^2J_{HPt}$ = 103 Hz), 2.12 (s, 3 H, Me). 13 C-APT NMR (50.30 MHz, d_6 -acetone): δ 210 (s, CO), 32.9 (s, Me), 25.8. (s, CH₂, ${}^{1}J_{CPt} = 657 \text{ Hz}$). ${}^{95}\text{Pt}\{{}^{1}\text{H}\}$ (86.18 MHz, d_{6} -acetone, ref. Na₂[PtCl₆]): δ -1743 (s). Crystals for the X-ray diffraction study were grown by slow diffusion of Et₂O into an MeCN solution of 1. ESI-MS(-): 839 [M-K⁺]⁻; 437 [Pt(CH₂C(O)Me)₃Cl₂]⁻. Anal. Calcd for C₁₈H₃₀Cl₃KO₆Pt₂: C, 24.62; H, 3.44. Found: C, 24.62; H, 3.44. Synthesis of Me₄N[Pt{CH₂C(O)Me}Cl₂(CH₂=CH₂)] (2'). To a solution of K[PtCl₃(CH₂=CH₂)] (610 mg, 1.65 mmol), in acetone (17 mL), Me₄NCl (340 mg, 3.1 mmol) and [Hg{CH₂C(O)Me}₂] (280 mg, 0.889 mmol) were successively added. The reaction mixture was stirred at room temperature for 6.5 h and the solvent was removed. The grey residue obtained was suspended in CH₂Cl₂ (10 mL) and the suspension was filtered through Celite. The yellow filtrate was concentrated (*ca.* 2 mL) and addition of Et₂O (3 x 5 mL) gave a suspension, which was filtered, and the solid was air-dried to # Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005 give **2'** as a pale yellow solid. Yield: 580 mg, 1.36 mmol, 83%. Mp: 72°C. $\Lambda_{\rm M}$ (acetone, 5 x 10⁻⁴ M): 114 Ω^{-1} cm² mol⁻¹. IR (cm⁻¹): v(C=O) 1647, v(C-N), Me₄N) 947, v(Pt-Cl) 311, 276. ¹H NMR (400 MHz, CDCl₃): δ 3.94 (bs, 4 H, CH₂=CH₂, ² $J_{\rm HPt}$ = 67.8 Hz), 3.44 (s, 12 H, NMe₄), 2.43 (s, 2 H, Pt*CH*₂, ² $J_{\rm HPt}$ = 106.8 Hz), 2.23 (s, 3 H, *Me*C(O)). ¹³C{¹H} NMR (100.81 MHz, CDCl₃): δ 213.4 (s, CO, ² $J_{\rm CPt}$ = 46 Hz), 64.91. (s, CH₂=CH₂, ¹ $J_{\rm CPt}$ = 230 Hz), 56.4 (t {1:1:1}, Me₄N, ¹ $J_{\rm NC}$ = 4 Hz), 31.0 (s, *Me*C(O)), 22.1 (s, Pt*CH*₂, ¹ $J_{\rm CPt}$ = 619 Hz). (400 MHz, acetona-d₆): 3.73 (bs, etileno, ² $J_{\rm HPt}$ = 66.7 Hz), 3.45 (s, 12 H, NMe₄), 2.34 (s, 2 H, MeC(O)*CH*₂, ² $J_{\rm HPt}$ = 106.5 Hz), 2.10 (s, 3 H, *Me*C(O)*CH*₂) ¹⁹⁵Pt{¹H} (86.18 MHz, CDCl₃, ref. Na₂[PtCl₆]): -3378.6 (s). Anal. Calcd for C₉H₂₁Cl₂O₁Pt: C, 25.42; H, 4.98; N, 3.29. Found: C, 25.49; H, 4.95; N, 3.16. ## ¹H NMR spectrum of the 1:1 reaction mixture after 15 min in d⁶-acetone