Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Asymmetric alkylation of dimethoxyphosphoryl-*N*-[1-(*S*)-α-methylbenzyl)acetamide enolates. Synthesis of both stereoisomers from the same source of chirality changing the equivalents of LDA

Mario Ordóñez^a, Eugenio Hernández-Fernández,^a Janet Xahuentitla,^a and Carlos Cativiela^b

 ^aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, 62210 Cuernavaca, Mor., México.
^bDeparment of Organic Chemistry, Universidad de Zaragoza, 50009 Zaragoza Spain.

Typical experimental procedure for the second alkylation of **3**. To a solution of the β -phosphonoamide **3** (1 mmol) in dry THF at -78° was added dropwise 2.0 or 2.5 equivalents of freshly preparated LDA from freshly titrated *n*-buthyllithium¹⁵ and freshly distilled diisopropylamine in dry THF. The resulting solution was stirred for 1 h at -78°. The benzyl bromide (1.1 equiv) was added with continuous stirring, and the mixture reaction was stirred at - 78° for 3-4 h and quenched with saturated aqueous NH₄Cl solution. The product was extracted with ethyl acetate, the combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The crude product was analyzed by NMR ¹H at 400 MHz and NMR ³¹P at 200 MHz. The diastereomeric mixture was cleanly separated by column chromatography (hexane:ethyl acetate 70:30) to afford (*R*,*S*)-**4** as colorless oil (less polar) and (*S*,*S*)-**5** as white solid (more polar)

(*R*,*S*)-4 as a colorless oil, $[\alpha]_D = -100$ (c = 2.2, CHCl₃). NMR ¹H (400 MHz, CDCl₃) δ 1.27 (d, J = 16.0 Hz, 3H, CH₃C(Bn)P), 1.50 (d, J = 7.0 Hz, 3H, CH₃CHPh), 2.88 (dd, J = 13.6, 10.0 Hz, 1H, CH₂Ph), 3.35 (dd, J = 13.6, 10.0 Hz, 1H, CH₂Ph), 3.78 (d, J = 10.8 Hz, 3H, (CH₃O)₂P), 3.82 (d, J = 10.8 Hz, 3H, (CH₃O)₂P), 5.11 (q, J = 7.0 Hz, 1H, CH(CH₃)Ph), 6.88-6.90 (m, 2H, H_{arom}), 7.01-7.17 (m, 3H, H_{arom}), 7.22-7.37 (m, 5H, H_{arom}). ¹³C NMR (100 MHz, CDCl₃) δ 16.8 (CH₃C(Bn)P), 22,0 (CH₃CHPh), 41.0 (CH₂Ph), 48.4 (d, J = 130.5, CCH₃(Bn)P), 49.7 (CH(CH₃)Ph), 53.7 (d, J = 7.6 Hz, (CH₃O)₂P), 53.9 (d, J = 7.6 Hz, (CH₃O)₂P), 126.7, 127.1, 127.6, 128.2, 128.9, 130.5, 135.4, 143.2, 168.3 C=O. ³¹P NMR (200 MHz, CDCl₃) δ 33.59. Anal. calcd. for C₂₀H₂₆NO₄P: C, 63.99; H, 6.98; N, 3.73%; found C, 63.67; H, 7.05; N, 3.44%.

(S,S)-5 as a white solid, M.p. 114-115 °C, $[\alpha]_D = -11$ (c = 2.2, CHCl₃). NMR ¹H (400 MHz, CDCl₃) δ 1.28 (d, J = 16.0 Hz, 3H, CH₃C(Bn)P), 1.52 (d, J = 7.2 Hz, 3H, CH₃CHPh), 2.94 (dd, J = 13.8, 10.2 Hz, 1H, CH₂Ph), 3.45 (dd, J = 13.8, 10.2 Hz, 1H, CH₂Ph), 3.50 (d, J = 10.8 Hz, 3H,

^{*} Corresponding author. E-mail:palacios@buzon.uaem.mx

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

(CH₃O)₂P), 3.80 (d, J = 10.8 Hz, 3H, (CH₃O)₂P), 5.12 (q, J = 7.2 Hz, 1H, CH(CH₃)Ph), 7.15-7.17 (m, 2H, H_{arom}), 7.21-7.27 (m, 4H, H_{arom}), 7.30-7.34 (m, 4H, H_{arom}) ¹³C NMR (100 MHz, CDCl₃) δ 17.0 (CH₃C(Bn)P), 22,2 (CH₃CHPh), 41.0 (CH₂Ph), 48.5 (d, J = 130.6, CCH₃(Bn)P), 49.5 (CH₃CHPh), 53.6 (d, J = 7.6 Hz, (CH₃O)₂P), 53.7 (d, J = 7.6 Hz, (CH₃O)₂P), 126.4, 127.3, 127.4, 128.3, 128.8, 130.5, 135.4, 143.5, 168.2 C=O. ³¹P NMR (200 MHz, CDCl₃) δ 33.59. Anal. calcd. for C₂₀H₂₆NO₄P: C, 63.99; H, 6.98; N, 3.73%; found C, 63.59; H, 6.95; N, 3.57%.

X-ray crystal data of (*S*,*S*)-5 were collected at 298 K using a Bruker APEX CCD instrument (Mo K α radiation, $\lambda = 0.71073$ Å). The SHELXTL v. 6.1 program package was used for structure solution and refinement. The structure was solved by direct methods and refined by full-matrix least squares procedures. All non-hydrogen atoms were refined anisotropically. (*S*,*S*)-5: C₂₀H₃₄NO₄P, *M* = 375.39, monoclinic space group P3(1)c, *a* = 11.172(4), *b* = 11.172(4), *c* = 13.401(7) Å, $\beta = 90^{\circ}$, *V* = 1448.4(10) Å³, *Z* = 3, *D*_c = 1.291 g cm⁻¹, 5242 reflections measured, 3277 unique (*R*_{int} = 0.1165) which were used in all calculations, final *R* values were 0.0761 [*F* > 4 σ (*F*)] and 0.0772 (all data).

Figure 1. X-Ray crystal structure of (*S*,*S*)-5.

15. E. Juaristi, A. Martínez-Richa, A. García-Rivera, and J. S. Cruz-Sánchez, J. Org. Chem. 1983, 48, 2603.