Electronic Supplementary Information

One-pot β-substitution of enones with alkyl groups to β-alkyl enones

Jun-ichi Matsuo* and Yayoi Aizawa

Center for Basic Research, The Kitasato Institute, 1-15-1-S105, Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
E-mail: matuo@lisci.kitasato-u.ac.jp
Fax \& Tel: +81-42-778-9931

General. Infrared (IR) spectra were recorded on a Jasco FT300 FT/IR-420. ${ }^{1}$ H NMR spectra were recorded on a JEOL JNM ECP500 $(500 \mathrm{MHz})$ spectrometer; chemical shifts (δ) are reported in parts per million relative to tetramethylsilane. Splitting patterns are designated as s , singlet; d , doublet; t , triplet; q , quartet; m , multiplet; br, broad. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM ECP500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in parts per million relative to tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3} ; \delta 77.0\right.$ ppm). GC-Mass spectra were recorded on a Shimadzu GC-MS QP5050A by chemical ionization method using isobutane. Mass spectra (EI) were recorded on a JEOL JMS-AX505HA in Kitasato University. High resolution mass spectra (HRMS) were recorded on a JEOL JMS-700 mass spectrometer in Kitasato University. Analytical gas-liquid chromatography (GLC) was performed on a Shimadzu GC-18A instrument equipped with a flame ionizing detector and a capillary column of TC-WAX $(0.25 \mathrm{~mm}$ I.D. $\mathrm{x} 30 \mathrm{~m}, \mathrm{df}=0.25 \mathrm{um}$, GL Sciences Inc.) using naphthalene as an internal standard. Analytical TLC was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). Silica-gel column chromatography was carried out on silica gel 60N (Kanto Kagaku Co., Ltd., spherical, neutral, 63-210 $\mu \mathrm{m}$). Preparative thin-layer chromatography (PTLC) was carried out on silica gel Wakogel B-5F. Diethyl ether was
distilled under argon from sodium/benzophenone ketyl. All β-alkyl substitution of enones was carried out under argon in dried glassware with magnetic stirring.
N-tert-Butylbenzenesufinimidoyl chloride (1) ${ }^{1}$ was prepared according to the literature procedure. 2-Cyclohexen-1-one (2), 2-cyclopenten-1-one (6), and 2-cyclohepten-1-one (8) were purchased and purified by distillation. 4-Phenyl-2-cyclohexen-1-one (4) ${ }^{2}$ was prepared by the reaction of trimethylsilyl enol ether of 4-phenylcyclohexanone and palladium acetate (1.2 equiv.) in acetonitrile (86% yield). ${ }^{3} \beta$-Alkyl enones such as 3-methyl-2-cyclohexen-1-one (3a) and 3-methyl-2-cyclopenten-1-one (7a) were purchased and used after distillation as an authentic sample for GC-analysis.

3-Butyl-2-cyclohexen-1-one (3b), 3-sec-butyl-2-cyclohexen-1-one (3c), 3-tert-butyl-2-cyclohexen-1-one (3d), and 3-butyl-2-cyclopenten-1-one (7b) were prepared according to the literature procedure ${ }^{4}$ by using the corresponding alkyl lithium. Spectrum data were shown below.

3-Butyl-2-cyclohexen-1-one (3b) ${ }^{5}$

3b
${ }^{1} \mathrm{H}$ NMR: $\delta 5.79(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=6.0 \mathrm{~Hz}), 2.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.89$ (m, 2H), 1.44-1.38 (m 2H), 1.30-1.23 (m, 2H), $0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 199.7, 166.6, $125.4,37.6,37.2,29.5,28.9,22.6,22.2,13.6$.

3-sec-Butyl-2-cyclohexen-1-one (3c) ${ }^{6}$
0

3c
${ }^{1} \mathrm{H}$ NMR: $\delta 5.78(\mathrm{~s}, 1 \mathrm{H}), 2.30-2.10(5 \mathrm{H}, \mathrm{m}), 1.95-1.85(\mathrm{~m} .2 \mathrm{H}), 1.50-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.78(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 199.9$, 170.7, 124.9, 43.1, 37.5, 27.3, 26.8, 22.7, 18.3, 11.6.

3-tert-Butyl-2-cyclohexen-1-one (3d) ${ }^{7}$

${ }^{1} \mathrm{H}$ NMR: $\delta 5.88(\mathrm{~s}, 1 \mathrm{H}), 2.30-2.28(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 200.0$, 173.2, 122.3, 36.8, 36.1, 27.6, 25.2, 22.6.

3-Butyl-2-cyclopenten-1-one (7b) ${ }^{5}$

${ }^{1}$ H NMR: $\delta 5.90-5.88(\mathrm{~m}, 1 \mathrm{H}), 2.55-2,51(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.20(\mathrm{~m}$, $2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 209.7,182.8,128.8,34.7,32.7,31.0,28.6,21.9,13.22$.

Following compounds were isolated after the β-substitution of enones with an alkyl group by using 1.

3-(2-phenylethyl)-2-cyclohexen-1-one (3f) ${ }^{8}$

${ }^{1} \mathrm{H}$ NMR: $\delta 7.31-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=5.7 \mathrm{~Hz}), 1.98(\mathrm{tt}, J=6.7,5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 199.7,166.4,140.6$, 128.7, 128.1, 127.1, 126.9, 45.1, 36.0, 33.7, 31.5, 29.1, 22.2, 13.7.

3-Phenyl-2-cyclohexen-1-one (3g)

${ }^{1} \mathrm{H}$ NMR: $\delta 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 199.7,159.6,138.6,129.8,128.6,125.9,125.2,37.1,27.9$, 22.6 .

3-Butyl-4-phenyl-2-cyclohexen-1-one (5a)

Ph 5a
${ }^{1} \mathrm{H}$ NMR: $\delta 7.35-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=4.1 \mathrm{~Hz}), 2.40-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 3 \mathrm{H})$, $1.50-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 199.7, 166.4, 140.6, 128.7, $128.1,127.1,126.9,45.1,36.0,33.7,31.5,29.1,22.2,13.73$. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2930,1673,1626,703$; MS(EI) $m / z 228\left(\mathrm{M}+\right.$). HRMS(EI) Found: m / z 228.1527. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}: 228.1514$.

3-sec-Butyl-4-phenyl-2-cyclohexen-1-one (5b)

${ }^{1} \mathrm{H}$ NMR (as a mixture of diastereomers): $\delta 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.13(\mathrm{~s}, 0.57 \mathrm{H}), 6.10(\mathrm{~s}, 0.43 \mathrm{H})$, 3.73-3.71 (m, 1H), 2.40-2.20 (m, 3H), 2.05-1.95 (m, 2H), 1.56-1.44 (m, 1H), 1.41-1.30 (m, 1H), 1.02 $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1.71 \mathrm{H}), 0.97(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1.29 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1.71 \mathrm{H}), 0.79(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 1.29 H). ${ }^{13} \mathrm{C}$ NMR (as a mixture of diastereomers): 200.1, 200.0, 171.1, 170.7, 140.3, 140.3, 128.7, $128.6,128.3,128.2,127.0,126.9,125.9,125.8,45.3,43.8,41.5,40.1,33.4,33.2,31.8,31.5,29.2,27.2$, 20.2, 17.9, 12.0, 11.3. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2963,1671,1452,1248,884,704 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 228(\mathrm{M}+)$. HRMS(EI) Found: m / z 228.1517. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}: 228.1514$.

3-tert-Butyl-4-phenyl-2-cyclohexen-1-one (5c)

${ }^{1} \mathrm{H}$ NMR: $\delta 7.30-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.05-2.00(\mathrm{~m}$, $1 \mathrm{H}), 1.03(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR: $\delta 200.9,172.7,140.2,128.5,127.9,126.7,125.6,41.5,37.3,32.6,32.1$, 29.19. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2966,1671,1245,760,704$; MS(EI) $m / z 228$ (M+). HRMS(EI) Found: m / z 228.1520. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}: 228.1514$.

3-Methyl-4-phenyl-2-cyclohexen-1-one (5d) ${ }^{9}$

${ }^{1} \mathrm{H}$ NMR: $\delta 7.35-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.00(\mathrm{~m}$, $1 \mathrm{H}), 1.81(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR: $\delta 199.4,162.5,140.5,128.7,128.4,128.0,127.0,46.4,33.9,31.4,23.4$. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1670,1248,703$.

4-Phenyl-3-trimethylsilylmethyl-2-cyclohexen-1-one (5e)

${ }^{1} \mathrm{H}$ NMR: $\delta 7.33-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.05-2.00(\mathrm{~m}$, $1 \mathrm{H}), 1.85(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 198.9,166.7,140.3$, 128.7, 128.3, 127.0, 126.0, 46.6, 32.9, 31.2, 29.4, -1.3. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1663,1249,847$; MS(EI) m / z $258(\mathrm{M}+)$. HRMS(EI) Found: m / z 258.1434. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OSi}$: 258.1440.

3-Cyclopropyl-4-phenyl-2-cyclohexen-1-one (5f)

${ }^{1} \mathrm{H}$ NMR: $\delta 7.34-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.07-2.02(\mathrm{~m}$, $1 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 1 \mathrm{H}), 0.86-0.75(\mathrm{~m}, 3 \mathrm{H}), 0.62-0.59(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 199.2,169.2,140.6$, $128.7,128.2,126.9,122.6,45.0,33.6,31.6,16.7,10.4,10.1$. $\operatorname{IR}\left(\mathrm{KBr}^{2} \mathrm{~cm}^{-1}\right) 3025,2943,1655,1618$, 1251, 703; MS(CI) $m / z 213(\mathrm{M}+1)$; MS(EI) $m / z 212(\mathrm{M}+$). HRMS(EI) Found: m / z 212.1191. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}: 212.1201$.

3-Butyl-2-cyclohepten-1-one (9) ${ }^{10}$

9

${ }^{1} \mathrm{H}$ NMR: $\delta 5.90(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.80-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 204.1,162.4,129.1,42.1$, 40.7, 32.5, 29.7, 25.1, 22.3, 21.2, 13.8. IR(KBr, cm^{-1}) 1660; MS(EI) $m / z 166$ (M+). HRMS (EI) Found: m / z 166.1348. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}: 166.1358$.

2-Naphthyl vinyl ketone (10) was prepared by the following procedure.

To a stirred suspension of N, O-dimethylhydroxylamine hydrochloride ($0.57 \mathrm{~g}, 5.84 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added triethylamine $(1.33 \mathrm{~g}, 13.1 \mathrm{mmol})$ and 2-naphthoyl chloride $(1.00 \mathrm{~g}$, 5.25 mmol) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred overnight at room temperature. The mixture was washed with 1 N HCl solution and saturated NaHCO_{3}, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by silica gel chromatography (hexane/ethyl acetate $=$ $2 / 1$) to give N-methoxy- N-methyl-2-naphthalenecarboxamide ($1.11 \mathrm{~g}, 5.18 \mathrm{mmol}, 99 \%$).
To a stirred solution of N-methoxy- N-methyl-2-naphthalenecarboxamide ($1.00 \mathrm{~g}, 4.65 \mathrm{mmol}$) in dry ether (47 mL) was added a solution of vinylmagnesium bromide in THF ($1 \mathrm{~N}, 9.3 \mathrm{~mL}$) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . The reaction was quenched by adding saturated NH 4 Cl solution, and the resulting mixture was extracted with ethyl acetate. The extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by silica gel column chromatography (hexane/ethyl acetate $=20 / 1$) to give $\mathbf{1 0}^{11}(350 \mathrm{mg}$, $1.92 \mathrm{mmol}, 41 \%)$ as a colorless solid: mp 39-40 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=1.4,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{ddd}, J=1.4,6.7$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (ddd, $J=1.4,6.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=11,17 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=1.4,17, \mathrm{~Hz}$, $1 \mathrm{H}), 5.99(\mathrm{dd}, J=11 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 190.8,135.5,134.6,132.5,132.3,130.4,130.0,129.5$, 128.6, 128.5, 127.8, 126.8, 124.4.

(E)-2-(2-Heptenoyl)naphthalene (11a)

11a
${ }^{1} \mathrm{H}$ NMR: $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=1.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dt}, J=15,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=15 \mathrm{~Hz}), 2.37$ $(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1,52(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 190.7$, $150.0,135.4,135.3,132.5,129.9,129.4,128.4,128.2,127.8,126.7,125.8,124.5,32.6,30.3,22.3$, 13.9. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1666,1618,1293,750$; MS(EI) $m / z 238(\mathrm{M}+$). HRMS(EI) Found: m / z 238.1355. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}: 238.1358$.
(E)-2-(4-Methyl-2-hexenoyl)naphthalene (11b)

O

11b
${ }^{1} \mathrm{H}$ NMR: $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=1.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=6.6,16 \mathrm{~Hz}), 7.00(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H})$, 2.43-2.35 (m, 1H), 1.65-1.46(m, 2H), $1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 190.9, 155.1, 135.4, 135.4, 132.5, 129.9, 129.5, 128.4, 128.2, 127.8, 126.7, 124.6, 124.2, 38.8, 29.0, 19.1, 11.8. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2962,1667,1616,1459,1360,1296,1187,1124,984,822,750 ; \mathrm{MS}(\mathrm{EI})$ $m / z 238(\mathrm{M}+)$. HRMS (EI) Found: m / z 238.1371. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}: 238.1358$.
N-Crotonoyl-2-oxazolidone (12) was prepared by Evans' procedure. ${ }^{12}$
(Z)-N-(3-Methyl-2-heptenoyl)-2-oxazolidone ((Z)-13)

${ }^{1} \mathrm{H}$ NMR: $\delta 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.97$ $(\mathrm{d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 164.8$, $163.8,153.4,115.0,61.7,42.7,34.3,30.3,25.9,22.9,13.9 . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1773,1678,1627,1387$, 1269, 1217, 1043, 708; MS(EI) $m / z 211$ (M+). HRMS(EI) Found: m / z 211.1192. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3}$: 211.1208. NOE (1.28\%) was observed between the vinylic proton and the 3-methyl group.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
(E)-N-(3-Methyl-2-heptenoyl)-2-oxazolidone ((E)-13)

0 O
0 N
(E)-13
${ }^{1} \mathrm{H}$ NMR: $\delta 6.93(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.16$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 165.4$, $163.3,153.5,114.7,61.7,42.6,41.2,29.6,22.3,19.9,13.9 . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2929,1775,1678,1627$, 1386, 1269, 1222, 1185, 1042: MS(CI) 212 (M+1); MS(EI) $m / z 211$ (M+). HRMS(EI) Found: m / z 211.1208. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3}$: 211.1208.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

References

[^0]
[^0]: ${ }^{1}$ Matsuo, J.-i.; Iida, D.; Tatani, K.; Mukaiyama, T., Bull. Chem. Soc. Jpn., 2002, 75, 223.
 ${ }^{2}$ Bergmann, E. D.; Varoslavsky, S., J. Am. Chem. Soc., 1959, 81, 2772.
 ${ }^{3}$ Ito, Y.; Hirao, T.; Saegusa, T., J. Org. Chem., 1978, 43, 1011.
 ${ }_{5}^{4}$ Moritani, Y.; Appella, D. H.; Jurkauskas, V.; Buchwald, S. L., J. Am. Chem. Soc., 2000, 122, 6797.
 ${ }_{6}^{5}$ Doris, E.; Dechoux, L.; Misokowski, C., J. Am. Chem. Soc., 1995, 117, 12700.
 ${ }^{6}$ Snider, B. B.; Rodini, D. J.; van Straten, J., J. Am. Chem. Soc., 1980, 102, 5872.
 ${ }^{7}$ Wada, E.; Funakoshi, J.; Kanemasa, S., Bull. Chem. Soc. Jpn., 1992, 65, 2456.
 ${ }^{8}$ Matsuyama, H.; Miyazawa, Y.; Takei, Y.; Kobayashi, M., J. Org. Chem., 1987, 52, 1703.
 ${ }^{9}$ Ross, N. C.; Levine, R., J. Org. Chem., 1964, 29, 2341.
 ${ }^{10}$ Kozikowski et al. reported a synthesis of a 2.5:1 mixture of the α, β-and β, γ-unsaturated enones: see, Kozikowski, A. P.; Jung, S. H., J. Org. Chem., 1986, 51, 3402. They did not report any spectroscopic data.
 ${ }^{11}$ Dannenberg, H.; Rahman, A., Chem. Ber., 1955, 88, 1405.
 ${ }^{12}$ Evans, D. A.; Chapman, K. T.; Bisaha, J., J. Am. Chem. Soc., 1988, 110, 1238.

