Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

Photosensitizing properties of 2,4-dichlorobenzoic acid and chlorinated biphenyl carboxylic acids, potentially key components of chromophoric dissolved organic matter.

Anne L. Boreen and Kristopher McNeill*

Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455

Absorbance of the model compounds of marine CDOM

Molar absorptivities of each compound were obtained from the slope of a linear fit to a plot of absorbance versus concentration at a particular wavelength in each of the solvents listed. Absorbance spectra were acquired on a Jasco V-530 spectrophotometer.

Compound	Solvent	ε _{300 nm}	ε _{266 nm}	ε _{254 nm}
2,4-DCBA	CH ₃ CN	40 ± 1	776 ± 7	nd
	EtOH	nd^a	747 ± 3	nd
	$H_2O(D_2O)^b$	25 ± 1	477 ± 8	1080 ± 20
BA	CH ₃ CN	< 1	750 ± 10	nd
	EtOH	nd	730 ± 3	nd
	$H_2O(D_2O)$	< 1	559 ± 1	711 ± 8
TCB	CH ₃ CN	42 ± 2	154 ± 4	93 ± 2
BPA	CH ₃ CN	2950 ± 40	21500 ± 200	nd
	EtOH	nd	21000 ± 70	nd
	$H_2O(D_2O)$	1400 ± 100	nd	15000 ± 1000
mono-Cl-BPA	CH ₃ CN	150 ± 10	12000 ± 100	14900 ± 100
	EtOH	nd	14200 ± 500	16400 ± 500
	$H_2O(D_2O)$	180 ± 10	nd	14700 ± 600
di-Cl-BPA	CH ₃ CN	3080 ± 30	12500 ± 100	nd
	EtOH	nd	27700 ± 800	nd
	$H_2O(D_2O)$	4400 ± 100	nd	16200 ± 400
PCB-47	CH ₃ CN	< 1	1640 ± 20	4770 ± 10

Calculation of environmental half-lives

Environmental half-lives $(t_{1/2})$ were calculated according to Eq (S1).

$$t_{\frac{1}{2}} = \frac{\ln 2}{\left(\Sigma \epsilon_{\lambda} L_{\lambda}\right) \Phi_{\text{direct}}}$$
(S1)

Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2005

In Eq (S1), ϵ_{λ} are the molar absorptivities of the substrate at a given wavelength, L_{λ} values are the solar intensity obtained from Leifer for 30° N and represent a 24 hour average intensity.¹ The wavelength range of 296 – 440 nm was used, corresponding to environmentally relevant wavelengths.

Table S2Aquatic environmental half-lives for model CDOM components basedon direct photolysis.				
Compound	$t_{1/2}^{a}$			
2,4-DCBA	21 days			
BPA	3 yrs			
2'-Cl-BPA	4 hrs			
3',4'-di-Cl-BPA	13 days			
^{<i>a</i>} Calculated based on a 24 hour average sunlight intensity at 30° N.				

Supporting Information References

1. A. Leifer, *The Kinetics of Environmental Aquatic Photochemistry: Theory and Practice*. American Chemical Society: Washington, DC, 1988.