Supplementary Information

Stereoisomerism in polyoxometalates: structural and spectroscopic studies of bis(malate)-functionalized cluster systems

Xikui Fang, Travis M. Anderson, Yu Hou and Craig L. Hill*

Experimental:

Synthesis of K₈Na₁₀[(α -P₂W₁₆O₅₉)Zr₂(μ_3 -O)(L-C₄O₅H₃)]₂·54H₂O (L,L-(+)-2). A 0.24 g (0.71 mmol) sample of ZrO(NO₃)₂·6H₂O is dissolved in 30 mL of deionized water, and 0.2 g (1.45 mmol) of L-malic acid is added, resulting in a slurry. The mixture is refluxed for 2 h and then cooled to room temperature. Solid Na₁₂[P₂W₁₅O₅₆]·18H₂O (2.0 g, 0.46 mmol) is quickly added with vigorous stirring. After stirring for 30 min, KCl (0.2 g, 2.7 mmol) is added. The solution is then heated to 80 °C for 45 min before cooling to room temperature. Slow evaporation of the solution produces prismatic crystals (0.45 g, yield 21.3%, based on W) in a week. [α]_D²⁰ = 1.8 (*c* = 1.0 in H₂O). Elemental analysis: Calcd Zr, 3.62; P, 1.23; W, 58.42. Found Zr, 3.83; P, 1.31; W, 58.19. K₈Na₁₀[(α -P₂W₁₆O₅₉)Zr₂(μ_3 -O)(D-C₄O₅H₃)]₂·50H₂O (D,D-(-)-2) is prepared in the similar way except that D-malic acid was used instead of L-malic acid (yield 25.4%, based on W). [α]_D²⁰ = -1.6 (*c* = 1.0 in H₂O). Elemental analysis: Calcd Zr, 3.64; P, 1.24; W, 58.84. Found Zr, 3.73; P, 1.22; W, 58.11. The number of crystal water molecules was determined by thermogravimetric analysis (TGA).

³¹P NMR (referenced to 85% H₃PO₄): $\delta = -6.36$, -6.46, -13.86 and -13.87 ppm; ¹³C NMR (reference to CDCl₃): $\delta = 189.15$, 187.49, 182.15, 181.70, 80.71, 80.21, 43.18 and 42.72 ppm; IR (KBr, cm⁻¹): $\tilde{\nu} = 1394$ (m), 1314(w), 1258(w), 1198(w), 1086(s), 1053(m), 1014(m), 941(s), 920(sh), 776(s), 629(m).

(b)

Figure S1. (a) Thermal ellipsoid plot of L,L-2 (top) and D,D-2 (bottom) and (b) the Newman projection of the malate ligand in L,L-2 showing the C(1)-C(2)-C(3)-C(4) torsion angle (δ).

Figure S2. Comparison of the circular dichroism (CD) spectra of L-1, D-1 and L,L-2, D,D-2, demonstrating that the Cotton effects observed here originate from the metal oxide moieties (the CD data for L-1 and D-1 are taken from reference 8).

Figure S3. Anticipated isomers of **2**. In principle, there are 10 stereoisomers for **2**: 4 enantiomeric pairs (diagrams 1 to 8) and 2 *meso* forms (diagrams 9 and 10). Only four isomers (5, 6, 9 and 10) are considered possible since all of the others put the two $[P_2W_{16}O_{59}]^{12-}$ units into a *cisoid* arrangement with respect to the Zr₄ plane, which is energetically unfavorable due to the internal steric effects.

The parallelogram represents the $[Zr_4O_4]^{8+}$ unit, whereas labeled open circles represent L and D-malate ligands. The two $[\alpha-P_2W_{16}O_{59}]^{12-}$ units are in a *transoid* arrangement with respect to the Zr₄ parallelogram plane, with the inward-oriented unit represented by a filled square and the outward counterpart represented by an open square.