Supplementary Data.

General: Optical rotations were measured at $25^{\circ} \mathrm{C}$ in a spectropolarimeter Perkin-Elmer 241-MC. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were registered in Bruker Advance 300 and 500 spectrometers, the spectra were obtained for solutions in $\mathrm{CD}_{3} \mathrm{OD}$ or $\mathrm{DMSO}-d_{6}$ and chemical shifts in spectra are reported in parts per million. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ assignments were confirmed by 2D COSY and HMQC, and also by NOE experiments when necessary. FAB-MS and CI-MS were measured with a Kratos MS-80-RFA instrument; for HR-MS a Micromass AutoSpeQ instrument was used.

1-Dideoxy-3,4:6,7-di-O-isopropylidene-D-glycero-D-galacto-heptitol and 1-deoxy-3,4:6,7-di-O-isopropylidene-D-glycero-D-talo-heptitol (12)

To a stirred solution of D-mannose diacetonide ($6.15 \mathrm{~g}, 23.61 \mathrm{mmoles}$) in dry THF (30 ml) at -78 ${ }^{\circ} \mathrm{C}, \mathrm{MeMgCl}(3 \mathrm{M}$ in THF, $24 \mathrm{ml}, 70.8 \mathrm{mmol}$) was added dropwise. The mixture was left at room temperature overnight. The excess of Grignard reagent was destroyed with $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$. The mixture was washed with water and extracted with AcOEt. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated to yield $\mathbf{1 2}(6.4 \mathrm{~g}, 95 \%, R / S=1)$ as a yellow solid.

1,2,5-Trideoxy-3,4:6,7-di- O-isopropylidene-2,5-di- O-methanesulphonyl-d-glycero-D-galactoheptitol and 1,2,5-trideoxy-3,4:6,7-di-O-isopropylidene-2,5-di-O-methanesulphonyl-d-glycero-D-talo-heptitol (13)

To a stirred solution of the mixture of epimers $\mathbf{1 2}(R / S=1,0.5 \mathrm{~g}, 1.81 \mathrm{mmoles})$ in pyridine (5 ml), methanesulphonyl chloride ($1.12 \mathrm{ml}, 14.5 \mathrm{mmoles}$) and catalytic dimethylaminopyridine were added. The mixture was stirred overnight, then cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ was added and the reaction was stirred for 15 min . The solvent was evaporated, the crude was diluted with dichloromethane, washed with $\mathrm{HCl}(1 \mathrm{M})$, saturated aqueous NaHCO_{3} and brine. The resulting residue was purified by column chromatography (AcOEt:petroleum ether, $1: 3 \rightarrow 1: 1$) to obtain 13 $(0.57 \mathrm{~g}, 74 \%, R / S=1)$ as a yellow amorphous solid.

2-Azide-1,2,5-trideoxy-3,4:6,7-di-O-isopropylidene-5-O-methanesulphonyl-D-glycero-D-galacto-heptitol and 2-azide-1,2,5-trideoxy-3,4:6,7-di- O-isopropylidene-5- O -methanesulphonyl-D-glycero-D-talo-heptitol (14)
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

To a stirred solution of $\mathbf{1 3}(260 \mathrm{mg}, 0.6 \mathrm{mmol}, R / S=1)$ in DMF (3 ml), trimethylsilyl azide ($316 \mu \mathrm{l}$, 2.5 mmoles) and tetrabuylammonium fluoride ($757 \mathrm{mg}, 2.4 \mathrm{mmoles}$) were added, and the reaction mixture was stirred for 4.5 h at $90^{\circ} \mathrm{C}$. Then, the solvent was evaporated and the resulting residue was directly purified by column chromatography (AcOEt:petroleum ether, 1:4) to give pure 14 (124 $\mathrm{mg}, 55 \%, S / R=3$).

1,2,5-Trideoxy-2,5-imino-3,4:6,7-di-O-isopropylidene-D-glycero-L-altro-heptitol and 1,2,5-trideoxy-2,5-imino-3,4:6,7-di-O-isopropylidene-D-glycero-L-allo-heptitol (15)

To a solution of azide derivatives $\mathbf{1 4}(400 \mathrm{mg}, 1.06 \mathrm{mmol}, S / R=3)$ in methanol (5 ml), catalytic $\mathrm{Pd} / \mathrm{C}(10 \%)$ was added, and the mixture was hydrogenated under atmospheric pressure for 2 h . Then, the catalyst was filtered off, DBU $(162 \mu 1,1.06 \mathrm{mmol})$ was added to the filtered solution, and the reaction mixture was stirred at r.t. for 12 h . The, the solvent was evaporated and the resulting residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 30: 1 \rightarrow 15: 1\right)$ to give pure $\mathbf{1 5}$ (265 $\mathrm{mg}, 99 \%, S / R=3$).
N-Benzyloxycarbonyl-1,2,5-trideoxy-2,5-imino-3,4- O-isopropylidene-D-glycero-L-altro-heptitol (16) and N-Benzyloxycarbonyl-1,2,5-trideoxy-2,5-imino-3,4-O-isopropylidene-D-glycero-L-allo-heptitol (17)

To a solution of $\mathbf{1 5}(1.63 \mathrm{~g}, 6.34 \mathrm{mmol})$ in $1: 1 \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(35 \mathrm{~mL}), \mathrm{NaHCO}_{3}(1.06 \mathrm{~g}, 12.68 \mathrm{mmol})$ and $\mathrm{ClCbz}(1.08 \mathrm{~mL}, 7.64 \mathrm{mmol})$ were added. After stirring for 2 h at r.t., the mixture was poured into sat. aq. soln. of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and extracted with $\mathrm{AcOEt}(3 \times 50 \mathrm{~mL})$. The organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The crude product was then dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $(40 \mathrm{~mL})$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was added. After heating at $50{ }^{\circ} \mathrm{C}$ for 12 h , the solvent was
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
evaporated. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and brine. The organic phases were dried, filtered and concentrated. Column chromatography (toluene:acetone 5:1) afforded $17(0.322 \mathrm{~g})$ and $16(0.966 \mathrm{~g})$ (58% global yield, 2 steps).
Data for compound 16: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 363 \mathrm{~K}, J \mathrm{~Hz}, \delta \mathrm{ppm}\right) \delta 7.37-7.09(\mathrm{~m}, 5 \mathrm{H}$, H-aromat.), $5.1\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=12.6\right.$, CHHPh), $5.0(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHHPh}), 4.75\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=6.2, \mathrm{H}-4\right)$, 4.68 (br. t, $1 \mathrm{H}, \mathrm{OH}$), $4.59\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=6.1, \mathrm{H}-3\right.$), 4.18 (br. m, $\left.1 \mathrm{H}, \mathrm{OH}\right), 4.07\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,6}=4.7\right.$, H5), 3.85 (qui, $1 \mathrm{H}, J_{2, \mathrm{CH}}=6.3, \mathrm{H}-2$), 3.82 (br. m, $1 \mathrm{H}, \mathrm{H}-6$), $3.39-3.23$ (m, $2 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$ and H-7b), 1.37 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of acetonide), $1.29\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetonide). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.4 MHz, DMSO- $\left.\mathrm{d}_{6}, 353 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 155.0(\mathrm{CO}), 137.4,128.8,128.2$, 128.1 (6 C aromat.), 110.5 $\left(\mathrm{C}(\mathrm{OMe})_{2}\right), 81.0(\mathrm{C}-3), 80.5(\mathrm{C}-4), 71.1(\mathrm{C}-6), 66.3(\mathrm{C}-5), 65.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 63.1(\mathrm{C}-7), 57.9(\mathrm{C}-2)$, 26.4, $25.4\left(2 \mathrm{CH}_{3}\right.$ of acetonide), 15.7 (br. s, $\left.\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}=+52\left(c \quad 1.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. CIMS: $352(10 \%$ $[\mathrm{M}+\mathrm{H}]^{+}$). HRCIMS found: 352.1752 (calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{6}+\mathrm{H}: 352.1760$).
Data for compound 17: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 373 \mathrm{~K}, J \mathrm{~Hz}, \delta \mathrm{ppm}\right) \delta 7.37-7.22(\mathrm{~m}, 5 \mathrm{H}$, H-aromat.), 5.14 (d, $1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=12.6, \mathrm{C} H \mathrm{HPh}$), $5.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Ph}), 4.75$ (br. s, $1 \mathrm{H}, \mathrm{OH}$), 4.70 (d, $\left.1 \mathrm{H}, J_{3,4}=5.7, \mathrm{H}-4\right), 4.37$ (dd, $1 \mathrm{H}, J_{2,3}=2.3, \mathrm{H}-3$), 4.25 (br. s, $1 \mathrm{H}, \mathrm{OH}$), $4.15\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,6}=3.9\right.$, H-5), 3.96 (qd, $1 \mathrm{H}, J_{2, \mathrm{CH}}=6.8, \mathrm{H}-2$), 3.67 (br. m, $1 \mathrm{H}, \mathrm{H}-6$), 3.42 (dd, $1 \mathrm{H}, J_{7 \mathrm{a}, \mathrm{OH}}=5.0, J_{7 \mathrm{a}, 7 \mathrm{~b}}=$ 11.4, $\mathrm{H}-7 \mathrm{a}$), $3.28\left(\mathrm{dd}, 1 \mathrm{H}, J_{7 \mathrm{~b}, \text { он }}=6.7, \mathrm{H}-7 \mathrm{~b}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetonide), $1.29\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetonide). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{DMSO}_{6}, 353 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 136.6,127.9$, 127.2, 126.7 (6 C aromat.), $110.0\left(\mathrm{C}(\mathrm{OMe})_{2}\right), 85.2(\mathrm{C}-3), 81.9(\mathrm{C}-4), 71.4(\mathrm{C}-6), 65.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $65.7(\mathrm{C}-5), 62.6(\mathrm{C}-7), 61.5(\mathrm{C}-2), 26.9,24.9\left(2 \mathrm{CH}_{3}\right.$ of acetonide), $18.1\left(\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}=+40(c 1.3$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). HRCIMS found: 352.1736 (calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{6}+\mathrm{H}: 352.1760$).

(2S,3S,4R,5S)-1-Benzyloxycarbonyl-2-formyl-5-methylpyrrolidine-3,4-diol (18)

A solution of $\mathrm{NaIO}_{4}(246 \mathrm{mg}, 1.18 \mathrm{mmol})$ in water $(5 \mathrm{~mL})$ was added dropwise to a solution of $\mathbf{1 6}$ ($207 \mathrm{mg}, 0.59 \mathrm{mmol}$) in THF (6 mL) cooled to $0^{\circ} \mathrm{C}$. After stirring for 1 h at r.t., THF was evaporated and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed successively with water, sat. aq. soln. of NaHCO_{3} and brine. The organic phase was dried, filtered and concentrated to give crude aldehyde $\mathbf{1 8}(173 \mathrm{mg}, 92 \%)$ which was used for the next step without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 363 \mathrm{~K}, J \mathrm{~Hz}, \delta \mathrm{ppm}\right) \delta 9.52\left(\mathrm{~d}, 1 \mathrm{H}, J_{2, \text { СНО }}=1.41, \mathrm{CHO}\right), 7.36-7.32$ (m, $5 \mathrm{H}, \mathrm{H}$-aromat.), 5.07 (br. s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.84 (d, $1 \mathrm{H}, J_{3,4}=6.3, \mathrm{H}-3$), 4.59 (t, $1 \mathrm{H}, J_{4,5}=6.2$, $\mathrm{H}-4$), 4.39 (br. s, $1 \mathrm{H}, \mathrm{H}-2$), 3.87 (qui, $1 \mathrm{H}, J_{2, \mathrm{CH}}=6.6, \mathrm{H}-5$), $1.47-1.24$ (m, $9 \mathrm{H}, 2 \mathrm{CH}_{3}$ of acetonide and CH_{3}). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{DMSO}_{6}, 353 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 198.4$ (CHO), 136.3, 128.1, 127.7, 127.4 (6 C aromat.), $111.2\left(\mathrm{C}(\mathrm{OMe})_{2}\right), 80.2(\mathrm{C}-4), 77.2(\mathrm{C}-3), 71.4(\mathrm{C}-2), 66.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 57.3(\mathrm{C}-5)$, 26.0, $24.8\left(2 \mathrm{CH}_{3}\right.$ of acetonide), 14.4 (br. $\left.\mathrm{s}, \mathrm{CH}_{3}\right)$. IR $\vee 2986,2938,1694,1412,1032 \mathrm{~cm}^{-1}$. HRCIMS found: 320.1496 (calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}+\mathrm{H}: 320.1498$).

(2S,3S,4R,5S)-1-Benzyloxycarbonyl-2-carboxi-5-methylpyrrolidine-3,4-diol (23)

To a stirred solution of aldehyde $18(271 \mathrm{mg}, 0.86 \mathrm{mmol})$ and 2-methyl-2-butene (0.9 ml) in tertbutanol (10 ml), a solution of $\mathrm{NaClO}_{2}\left(0.82 \mathrm{~g}, 9\right.$ mmoles) and $\mathrm{KH}_{2} \mathrm{PO}_{4}(1.23 \mathrm{~g}, 9$ mmoles) in water $(8 \mathrm{ml})$ was added. The reaction mixture was stirred overnight at r.t. Then, the solvent was evaporated, the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, the organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated to give pure $23(235 \mathrm{mg}, 82 \%)$ which was used in the next step without further purification.

(2S,3S,4R,5S)-5-Methyl-2-phenylaminomethyl-pyrrolidine-3,4-diol (24)

To a solution of $\mathbf{1 8}(115 \mathrm{mg}, 0.36 \mathrm{mmol})$ in 1,2-dichloroethane (3 mL), aniline ($0.1 \mathrm{~mL}, 1.08 \mathrm{mmol}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(120 \mathrm{mg}, 0.54 \mathrm{mmol})$ were added. The reaction mixture was stirred at r.t. for 4 h under argon. Then, sat. aq. soln. of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the mixture extracted with AcOEt $(3 \times 15 \mathrm{~mL})$. The organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Column chromatography (AcOEt:petroleum ether 1:5) afforded 22 ($105 \mathrm{mg}, 74 \%$). To a solution of 22 (90 $\mathrm{mg}, 0.227 \mathrm{mmol})$ in THF (2 mL), $1 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$ was added. After stirring at r.t for 6 h , THF was evaporated, the mixture neutralized with sat. aq. soln. of NaHCO_{3} and extracted with AcOEt. The organic phases were dried, filtered and concentrated. The crude intermediate was then dissolved in $\mathrm{MeOH}(6 \mathrm{~mL})$ and hydrogenated over Pd / C for 4 h . The mixture was filtered through celite and evaporated. Chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH} 6: 1: 0.1\right)$ yielded 24 (50 mg , 100\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) \delta 6.99(\mathrm{t}, 2 \mathrm{H}, J=7.5, \mathrm{H}$-aromat.), $6.52(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ aromat.), $3.82\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=7.1, J_{3,4}=4.3, \mathrm{H}-3\right), 3.72\left(\mathrm{t}, 1 \mathrm{H}, J_{4,5}=3.2\right.$, H-4), 3.24-3.16 (m, 2 H , $\mathrm{H}-2$ and R-CHH-NHR'), $3.07\left(\mathrm{qd}, 1 \mathrm{H}, J_{5, \mathrm{CH}}=6.7, \mathrm{H}-5\right), 3.01\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.6, J_{\mathrm{CH}, \mathrm{H}}=8.9\right.$, RCHH -NHR') $1.07\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}\right) \delta 128.6,116.8,112.7$ ($6 \mathrm{C}-$ aromat.), $76.8,74.0(\mathrm{C}-3, \mathrm{C}-4), 60.7(\mathrm{C}-2), 55.0(\mathrm{C}-5), 47.0\left(\mathrm{R}-\mathrm{CH}_{2}-\mathrm{NHR}{ }^{\prime}\right), 13.2\left(\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}=-67$ (c 0.8, MeOH). CIMS: $223\left(50 \%[M+H]^{+}\right)$. HRCIMS found: 223.1439 (calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}$: 223.1446).

(2S,3S,4R,5S)-2-(1H-Benzoimidazol-2-yl)-1-benzyloxycarbonyl-3,4-isopropylidenedioxy-5methylpyrrolidine (26)

To a solution of acid 23 ($54 \mathrm{mg}, 0.161 \mathrm{mmol}$) and o-phenylenediamine ($19 \mathrm{mg}, 0.177 \mathrm{mmol}$), PyBOP ($92 \mathrm{mg}, 0.177 \mathrm{mmol}$) and diisopropylethylamine ($55 \mu \mathrm{l}, 0.322 \mathrm{mmol}$) were added, and the mixture was stirred at r.t. for 1 h . Then, the solvent was evaporated, the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous solution of citric acid and brine. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated, the resulting crude was purified by column
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 30: 1\right)$ to give 25 ($45 \mathrm{mg}, 65 \%$). Compound 25 ($45 \mathrm{mg}, 0.104$ $\mathrm{mmol})$ was dissolved in glacial $\mathrm{AcOH}(2 \mathrm{ml})$ and the mixture was stirred for 30 min . at $45^{\circ} \mathrm{C}$. Then, the solvent was evaporated and the resulting residue was purified by column chromatography (ether:petroleum ether, 3:1) to give pure $26(43 \mathrm{mg}, 100 \%)$.

(2S,3S,4R,5S)-2-(1H-Benzoimidazol-2-yl)-5-methylpyrrolidine-3,4-diol (27)

A solution of $26(43 \mathrm{mg}, 0.104 \mathrm{mmol})$ in THF-(1M)HCl $(1: 1,2 \mathrm{ml})$ was stirred for 12 h , then the solvent was evaporated. The resulting residue was dissolved in MeOH (3 ml), catalytic Pd-C (10\%) was added and the mixture was hydrogenated under atmospheric pressure for 3 h . The catalyst was filtered off, the filtered solution was concentrated and the resulting residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 6: 1: 0.1\right)$ to give $27(21 \mathrm{mg}, 87 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) \delta 7.52$ (dd, $2 \mathrm{H}, J=3.2,6.0$, H-aromat.), 7.20 (dd, 2 H , H-aromat.), 4.47 (dd, $1 \mathrm{H}, J_{2,3}=7.7, J_{3,4}=4.1, \mathrm{H}-3$), 4.35 (d, $1 \mathrm{H}, \mathrm{H}-2$), 3.96 (t, $1 \mathrm{H}, J_{4,5}=3.2$, H4), 3.49 (qd, $\left.1 \mathrm{H}, J_{5, \mathrm{CH}}=6.7, \mathrm{H}-5\right), 1.22\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}\right) \delta$ 158.3, 123.9 (7 C-aromat.), $80.9(\mathrm{C}-3), 76.2(\mathrm{C}-4), 62.0(\mathrm{C}-2), 57.6(\mathrm{C}-5), 15.4\left(\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}=-28(c$ $0.5, \mathrm{MeOH})$. FABMS: $234\left(60 \%[\mathrm{M}+\mathrm{H}]^{+}\right), 256\left(16 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRFABMS found: 234.1242 (calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}$: 234.1243).
(2S,3S,4R,5R)-2-(1H-Benzoimidazol-2-yl)-5-methylpyrrolidine-3,4-diol (28)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) \delta 7.53$ (dd, $2 \mathrm{H}, J=3.2,6.0, \mathrm{H}$-aromat.), 7.20 (dd, 2 H , H-aromat.), 4.27 (d, $\left.1 \mathrm{H}, J_{2,3}=5.2, \mathrm{H}-2\right), 4.17\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=5.6, \mathrm{H}-3\right), 3.65\left(\mathrm{t}, 1 \mathrm{H}, J_{4,5}=6.2, \mathrm{H}-4\right)$, 3.19 (qui, $1 \mathrm{H}, J_{5, \mathrm{CH}}=6.5, \mathrm{H}-5$), $1.30\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}\right) \delta 157.0$, 123.8 (7 C-aromat.), $78.8(\mathrm{C}-3)$, $78.1(\mathrm{C}-4), 63.7(\mathrm{C}-2), 60.3(\mathrm{C}-5), 19.3\left(\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}=-12(c 1.3$, $\mathrm{MeOH})$. CIMS: $234\left(70 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$. HRCIMS found: 234.1235 (calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}$: 234.1243).

Supplementary Data.

General: Optical rotations were measured at $25^{\circ} \mathrm{C}$ in a spectropolarimeter Perkin-Elmer 241-MC. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were registered in Bruker Advance 300 and 500 spectrometers, the
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
spectra were obtained for solutions in $\mathrm{CD}_{3} \mathrm{OD}$ or $\mathrm{DMSO}-d_{6}$ and chemical shifts in spectra are reported in parts per million. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ assignments were confirmed by 2D COSY and HMQC, and also by NOE experiments when necessary. FAB-MS and CI-MS were measured with a Kratos MS-80-RFA instrument; for HR-MS a Micromass AutoSpeQ instrument was used.
($2 S, 3 S, 4 R, 5 R, 1 ' R$)-1-Benzyloxycarbonyl-2-(1',2'-dihydroxyethyl)-3,4-isopropylide-nedioxy-5methylpyrrolidine (16)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 363 \mathrm{~K}, J \mathrm{~Hz}, \delta \mathrm{ppm}\right) \delta 7.37-7.09$ (m, $5 \mathrm{H}, \mathrm{H}$-aromat.), 5.1 (d, 1 H , $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=12.6, \mathrm{C} H \mathrm{HPh}\right), 5.0(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Ph}), 4.75\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=6.2, \mathrm{H}-3\right), 4.68$ (br. t, $\left.1 \mathrm{H}, \mathrm{OH}\right)$, $4.59\left(\mathrm{t}, 1 \mathrm{H}, J_{4.5}=6.1, \mathrm{H}-4\right), 4.18$ (br. m, $1 \mathrm{H}, \mathrm{OH}$), $4.07\left(\mathrm{~d}, 1 \mathrm{H}, J_{2,1}=4.7, \mathrm{H}-2\right), 3.85$ (qui, 1 H , $J_{5, \mathrm{CH}}=6.3, \mathrm{H}-5$), 3.82 (br. m, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.39-3.23$ (m, $2 \mathrm{H}, \mathrm{H}-2$ 'a and H-2'b), 1.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of acetonide), $1.29\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetonide) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}\right.$, DMSO- d_{6}, $353 \mathrm{~K}, \delta \mathrm{ppm}) \delta 155.0(\mathrm{CO}), 137.4,128.8,128.2,128.1\left(6 \mathrm{C}\right.$ aromat.), $110.5\left(\mathrm{C}(\mathrm{OMe})_{2}\right), 81.0(\mathrm{C}-$ 4), $80.5(\mathrm{C}-3), 71.1\left(\mathrm{C}-1{ }^{\prime}\right), 66.3(\mathrm{C}-2), 65.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 63.1\left(\mathrm{C}-2{ }^{\prime}\right), 57.9(\mathrm{C}-5), 26.4,25.4\left(2 \mathrm{CH}_{3}\right.$ of acetonide), 15.7 (br. s, $\left.\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}=+52\left(c \quad 1.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. CIMS: $352\left(10 \%[\mathrm{M}+\mathrm{H}]^{+}\right)$. HRCIMS found: 352.1752 (calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{6}+\mathrm{H}: 352.1760$).
($2 S, 3 S, 4 R, 5 S, 1^{\prime} R$)-1-Benzyloxycarbonyl-2-(1',2'-dihydroxyethyl)-3,4-isopropylide-nedioxy-5methylpyrrolidine (17)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 373 \mathrm{~K}, J \mathrm{~Hz}, \delta \mathrm{ppm}\right) \delta 7.37-7.22$ (m, $5 \mathrm{H}, \mathrm{H}$-aromat.), 5.14 (d, 1 H , $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=12.6, \mathrm{C} H \mathrm{HPh}\right), 5.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Ph}), 4.75(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.70\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=5.7, \mathrm{H}-3\right)$, 4.36 (dd, $1 \mathrm{H}, J_{4,5}=2.3, \mathrm{H}-4$), 4.25 (br. s, $1 \mathrm{H}, \mathrm{OH}$), 4.15 (d, $1 \mathrm{H}, J_{2,1}=3.9, \mathrm{H}-2$), 3.93 (qd, 1 H , $J_{5, \mathrm{CH}}=6.8, \mathrm{H}-5$), 3.67 (br. m, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.42\left(\mathrm{dd}, 1 \mathrm{H}, J_{2^{\prime} \mathrm{a}, \mathrm{OH}}=5.0, J_{2^{\prime} \mathrm{a}^{2}{ }^{2}{ }^{\prime} \mathrm{b}}=11.4, \mathrm{H}-2^{\prime} \mathrm{a}\right.$), 3.28 (dd, $1 \mathrm{H}, J_{2}{ }^{\prime} \mathrm{b}$, он $\left.=6.7, \mathrm{H}-\mathbf{2}^{\prime} \mathrm{b}\right)$, $1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetonide $), 1.29\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of acetonide). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{DMSO}_{6}, 353 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 136.6,127.9,127.2$, 126.7 (6 C aromat.), $110.0\left(\mathrm{C}(\mathrm{OMe})_{2}\right), 85.2(\mathrm{C}-4), 81.9(\mathrm{C}-3), 71.4(\mathrm{C}-1), 65.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 65.7(\mathrm{C}-2), 62.6(\mathrm{C}-$ $\left.2^{\prime}\right), 61.5(\mathrm{C}-5), 26.9,24.9\left(2 \mathrm{CH}_{3}\right.$ of acetonide $), 18.1\left(\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}=+40\left(c 1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRCIMS found: 352.1736 (calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{6}+\mathrm{H}: 352.1760$).
\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) \delta 6.99(\mathrm{t}, 2 \mathrm{H}, J=7.5, \mathrm{H}-\mathrm{aromat}$), $6.52(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ aromat.), $3.82\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,5}=7.1, J_{3,4}=4.3, \mathrm{H}-4\right), 3.72\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=3.2\right.$, H-3), 3.24-3.16 (m, 2 H , H-5 and R-CHH-NHR'), 3.07 (qd, $1 \mathrm{H}, \mathrm{J}_{2, \mathrm{CH}}=6.7, \mathrm{H}-2$), $3.01\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.6, J_{\mathrm{CH}, \mathrm{H}}=8.9\right.$, R-CHH-NHR') $1.07\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}\right) \delta 128.6,116.8$, 112.7 ($6 \mathrm{C}-$ aromat.), 76.8, $74.0(\mathrm{C}-3, \mathrm{C}-4), 60.7(\mathrm{C}-5), 55.0(\mathrm{C}-2), 47.0\left(\mathrm{R}-\mathrm{CH}_{2}-\mathrm{NHR}\right)$, $13.2\left(\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}=-67$ (c 0.8, MeOH). CIMS: $223\left(50 \%[M+H]^{+}\right)$. HRCIMS found: 223.1439 (calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}$: 223.1446).
(2S,3S,4R,5S)-2-(1H-Benzoimidazol-2-yl)-5-methylpyrrolidine-3,4-diol (27)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) \delta 7.52$ (dd, $2 \mathrm{H}, J=3.2,6.0, \mathrm{H}$-aromat.), 7.20 (dd, 2 H , H -aromat.), 4.47 (dd, $\left.1 \mathrm{H}, J_{2,3}=7.7, J_{3,4}=4.1, \mathrm{H}-3\right), 4.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2), 3.96\left(\mathrm{t}, 1 \mathrm{H}, J_{4,5}=3.2\right.$, H4), $3.49\left(\mathrm{qd}, 1 \mathrm{H}, J_{5, \mathrm{CH}}=6.7, \mathrm{H}-5\right), 1.22\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}\right) \delta$ 158.3, 123.9 (7 C-aromat.), $80.9(\mathrm{C}-3), 76.2(\mathrm{C}-4), 62.0(\mathrm{C}-2), 57.6(\mathrm{C}-5), 15.4\left(\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}=-28(c$ $0.5, \mathrm{MeOH})$. FABMS: $234\left(60 \%[\mathrm{M}+\mathrm{H}]^{+}\right), 256\left(16 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRFABMS found: 234.1242 (calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}$: 234.1243).

(2S,3S,4R,5R)-2-(1H-Benzoimidazol-2-yl)-5-methylpyrrolidine-3,4-diol (28)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) \delta 7.53$ (dd, $2 \mathrm{H}, J=3.2,6.0, \mathrm{H}$-aromat.), 7.20 (dd, 2 H , H -aromat.), $4.27\left(\mathrm{~d}, 1 \mathrm{H}, J_{2,3}=5.2, \mathrm{H}-2\right), 4.17\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=5.6, \mathrm{H}-3\right), 3.65\left(\mathrm{t}, 1 \mathrm{H}, J_{4.5}=6.2, \mathrm{H}-4\right)$, 3.19 (qui, $\left.1 \mathrm{H}, J_{5, \mathrm{CH}}=6.5, \mathrm{H}-5\right), 1.30\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}\right) \delta 157.0$, 123.8 (7 C-aromat.), $78.8(\mathrm{C}-3)$, $78.1(\mathrm{C}-4), 63.7(\mathrm{C}-2), 60.3(\mathrm{C}-5), 19.3\left(\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}=-12(c 1.3$, $\mathrm{MeOH})$. CIMS: 234 ($70 \%,[\mathrm{M}+\mathrm{H}]^{+}$). HRCIMS found: 234.1235 (calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}$: 234.1243).

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

${ }^{1} \mathrm{H}$-NMR (300 MHz , DMSO- $d_{6}, 363 \mathrm{~K}$)

${ }^{1} \mathrm{H}$-NMR (500 MHz , DMSO- $d_{6}, 373 \mathrm{~K}$) NOE between $\mathrm{H}-3(\delta=4.37)$ and $\mathrm{CH}_{3}(\delta=1.28)$

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

$\cdots-\cdots .109 .97$

${ }^{13} \mathrm{C}-$ NMR (75.4 MHz, DMSO-d $6,353 \mathrm{~K}$)

${ }^{\dagger} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$

$\cdots-$
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

\# This journal is © The Royal Society of Chemistry 2005

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

20 [ppm]

