One-pot formation of nitrogen-containing heterocyclic ring systems using a one-pot deprotection/cyclisation/asymmetric reduction sequence.

Glynn D. Wliams, ${ }^{a}$ Charles E. Wade ${ }^{b}$ and Martin Wills**
${ }^{a}$ Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.. Fax: 44247652 4112; Tel: 44247652 3260; E-mail: m.wills@warwick.ac.uk. ${ }^{b}$ GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK

Supporting Information

All reactions, unless otherwise stated, were run under an atmosphere of nitrogen at ambient temperature $\left(18-22{ }^{\circ} \mathrm{C}\right) .0{ }^{\circ} \mathrm{C}$ refers to an ice/water slush bath and $-78{ }^{\circ} \mathrm{C}$ refers to a dry ice-acetone bath. Heated experiments were conducted using thermostatically controlled oil baths. Reactions were monitored by TLC using aluminium backed silica gel 60 (F254) plates, visualised using UV 254 and 2,4dinitrophenylhydrazine, ninhydrin and potassium permanganate dips as appropriate. Flash column chromatography was carried out routinely using $60 \AA$ silica gel (Merck). Reagents were used as received from commercial sources apart from the following exceptions, THF was distilled from sodium benzophenone ketyl, triethylamine was distilled from calcium hydride and formic acid was distilled from phthalic anhydride. NMR spectra were recorded on a Bruker DPX (300 or 400 MHz) spectrometer. Chemical shifts are reported in δ units, parts per million downfield from TMS. Coupling constants (J) are measured in hertz. IR spectra were recorded on a PerkinElmer spectrum One FT-IR Golden Gate. Mass spectra were recorded on a 7070E VG mass spectrometer. Melting points were recorded on a Stuart Scientific SMP 1 instrument and are uncorrected.

Synthesis of \boldsymbol{t}-butyl-2-(4,5-dimethoxy-2-hex-5-oxoylphenyl)-ethylcarbamate (7)

\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005

To a suspension of Mg turnings ($0.29 \mathrm{~g}, 11.2 \mathrm{mmol}$) in THF (5 mL) was added a solution of 5-bromopent-1-ene ($1.36 \mathrm{~g}, 9.1 \mathrm{mmol}$) in THF (5 mL) followed by a single crystal of iodine, the mixture was heated under reflux for 2 h and then cooled to rt. The Grignard solution was added to a solution of t-butyl-6,7-dimethoxy-1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate ($2.0 \mathrm{~g}, 6.5 \mathrm{mmol}$) in THF (40 mL) in one portion at rt . The resulting mixture was stirred for $1 \mathrm{~h}, 2 \mathrm{M} \mathrm{HCl}$ was added to acidify ($\mathrm{pH} 1-2$) and the phases separated, the aqueous phase was further exractracted with DCM ($3 \times 30 \mathrm{~mL}$). The organics were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to afford a yellow oil which was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc-Hexanes $\left.15: 85\right)$ to afford t-butyl-2-(4,5-dimethoxy-2-hex-5-oxoylphenyl)-ethylcarbamate ($1.75 \mathrm{~g}, 71 \%$) as a white solid; mp $42-44{ }^{\circ} \mathrm{C}$; (Found: C, 66.78; H, 8.29; N, 3.80. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{5}$ requires C, $66.82 ; \mathrm{H}, 8.28 ; \mathrm{N}$, 3.71%); $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 3364,2938,1673,1516$ and $1128 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 7.17(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 5.81(1 \mathrm{H}, \mathrm{ddt}, J 17.1,9.5$ and 7.2, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 5.04\left(1 \mathrm{H}, \mathrm{dq}, J 17.1\right.$ and $\left.1.5, \mathrm{HC}=\mathrm{C} H_{\text {trans }} \mathrm{H}_{\mathrm{cis}}\right), 5.00$ (1, dq, $J 9.5$ and 1.1, $\mathrm{HC}=\mathrm{CH}_{\text {trans }} H_{\text {cis }}$), $3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.37$ (2 H, q, J 6.8, NCH $)_{2}$), $2.96\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{ArCH}_{2}\right), 2.89\left(2 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{COCH}_{2}\right), 2.14(2$ $\left.\mathrm{H}, \mathrm{q}, J 7.2, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.82\left(2 \mathrm{H}\right.$, quintet, $\left.J 7.2 \mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right)$ and $1.42(9 \mathrm{H}, \mathrm{s}, t-$ $\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 203.1\left(\mathrm{C}_{\mathrm{q}}\right), 156.5\left(\mathrm{C}_{\mathrm{q}}\right), 151.9\left(\mathrm{C}_{\mathrm{q}}\right), 141.1\left(\mathrm{C}_{\mathrm{q}}\right), 138.4(\mathrm{CH})$, $134.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $130.4\left(\mathrm{C}_{\mathrm{q}}\right), 115.7\left(\mathrm{CH}_{2}\right), 114.6(\mathrm{CH}), 112.6(\mathrm{CH}), 79.3\left(\mathrm{C}_{\mathrm{q}}\right), 56.6\left(\mathrm{CH}_{3}\right)$, $56.4\left(\mathrm{CH}_{3}\right), 42.6\left(\mathrm{CH}_{2}\right), 40.7\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{3}\right)$, and 23.9 $\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{EI}+) 377.2202\left(\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{5}\right.$ requires 377.2214), 377 (1 \%), 303 (15), 260 (40), 205 (42), 78 (90) and 62 (100).

Synthesis of \boldsymbol{t}-butyl-2-[4,5-dimethoxy-2-(5-oxopentanoyl)phenyl]-ethylcarbamate

(3)

To a solution of t-butyl-2-(4,5-dimethoxy-2-hex-5-oxoylphenyl)-ethylcarbamate $(2.19 \mathrm{~g}, 5.8 \mathrm{mmol})$ in dioxane/water $(43.8 \mathrm{~mL} / 13.1 \mathrm{~mL})$ under nitrogen was added
\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
osmium tetroxide ($37 \mathrm{mg}, 0.14 \mathrm{mmol}$), the solution was stirred for 20 minutes, NaIO_{4} ($2.48 \mathrm{~g}, 1.2 \mathrm{mmol}$) was added portion-wise over 1 h and the resulting mixture stirred for 1 h . The white precipitate was filtered and washed with DCM ($2 \times 100 \mathrm{~mL}$). The phases separated and the aqueous phase was further extracted with DCM ($2 \times$ $100 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure to afford a brown oil which was purified by flash column chromatography (SiO_{2}, EtOAc-Hexanes $50: 50$) to afford t-butyl-2-[4,5-dimethoxy-2-(5-oxopentanoyl)phenyl]-ethylcarbamate ($1.85 \mathrm{~g}, 85 \%$) as an off white solid; mp 49 $51{ }^{\circ} \mathrm{C}$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3371,2970,1707,1674,1513,1263$ and $1127 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.82(1 \mathrm{H}, \mathrm{t}, J 1.3, H C O), 7.22(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.75(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 5.03$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 3.93\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 3.86\left(2 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{NCH}_{2}\right), 2.99(2 \mathrm{H}, \mathrm{t}, J 6.8$, $\left.\mathrm{ArCH}_{2}\right), 2.96\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{COCH}_{2}\right), 2.59\left(2 \mathrm{H}, \mathrm{dt}, J 7.1\right.$ and 1.3, $\left.\mathrm{HCOCH}_{2}\right), 2.05(2$ H , quintet, J 7.1, $\mathrm{COCH}_{2} \mathrm{CH}_{2}$) and $1.42(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 202.4$ $(\mathrm{CH}), 201.9\left(\mathrm{C}_{\mathrm{q}}\right), 156.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.1\left(\mathrm{C}_{\mathrm{q}}\right), 147.2\left(\mathrm{C}_{\mathrm{q}}\right), 134.8\left(\mathrm{C}_{\mathrm{q}}\right), 129.8\left(\mathrm{C}_{\mathrm{q}}\right), 114.8$ $(\mathrm{CH}), 112.7(\mathrm{CH}), 79.3\left(\mathrm{C}_{q}\right) 56.6\left(\mathrm{CH}_{3}\right), 56.4\left(\mathrm{CH}_{3}\right), 43.5\left(\mathrm{CH}_{2}\right), 42.6\left(\mathrm{CH}_{2}\right), 40.2$ $\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{3}\right)$ and $17.3\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{EI}+) 379.1994\left(\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{6}\right.$ requires 379.1977), 379 (15%), 305 (15), 280 (35), 262 (100), and 179 (65).

Synthesis of 9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1- α] isoquinoline (4)

t-Butyl-2-[4,5-dimethoxy-2-(5-oxopentanoyl)phenyl]-ethylcarbamate $\quad(0.10 \quad \mathrm{~g}$, $0.26 \mathrm{mmol})$ was stirred in freshly distilled formic acid $(0.9 \mathrm{~mL})$ for 1 h . The flask was then sealed and cooled to $0^{\circ} \mathrm{C}$; triethylamine $(0.15 \mathrm{~mL})$ was added cautiously with vigorous shaking until all gas had redissolved. In a separate flask a mixture of (p cymene) ruthenium (II) chloride dimer ($0.4 \mathrm{mg}, 0.25 \mathrm{~mol} \%$) and ($1 R, 2 R$)-TsDPEN ($0.5 \mathrm{mg}, 0.5 \mathrm{~mol} \%$), triethylamine (1 drop) and anhydrous acetonitrile (0.5 mL) were stirred at $40^{\circ} \mathrm{C}$ for 40 minutes The catalyst solution was transferred to the formic acid
\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
/ triethylamine solution and the mixture stirred at $28^{\circ} \mathrm{C}$ for 3 h . The mixture was made basic ($\mathrm{pH} 9-10$) with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with DCM ($3 \times 25 \mathrm{~mL}$). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, DCM-MeOH, 97:3) to afford the 9,10-dimethoxy-1,3,4,6,7,11b-hexahydro- 2 H pyrido $[2,1-\alpha]$ isoquinoline ($42 \mathrm{mg}, 64 \%)^{1}$ as a pale brown oil; $[\alpha]_{D}^{22}-39.4(c=0.36$ in CHCl_{3}); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2918,2746,1509,1258$ and $1005 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.57(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 3.85(6 \mathrm{H}, \mathrm{s} 2 \times \mathrm{OCH}$) , 3.19-3.01 (2 H, m, CH and $\left.\mathrm{ArCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 3.04-2.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{NCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 2.62(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and 3.9, $\left.\mathrm{ArCH}_{\mathrm{a}} H_{\mathrm{b}}\right), 2.54\left(1 \mathrm{H}, \mathrm{dt}, J 11.5\right.$ and $\left.3.9, \mathrm{ArCH}_{2} \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right), 2.36(1 \mathrm{H}, \mathrm{dt}, 11.1$ and 4.5, $\mathrm{NCH}_{\mathrm{a}} H_{\mathrm{b}}$), 2.45-2.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.96-1.91 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.76-1.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$) and 1.56-1.44 $\left(2 \mathrm{H}, \mathrm{m} \mathrm{CHCH} 2 \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right.$ and $\left.\mathrm{CHCH}_{\mathrm{a}} H_{b}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 147.8\left(\mathrm{C}_{\mathrm{q}}\right), 147.5\left(\mathrm{C}_{\mathrm{q}}\right), 130.3\left(\mathrm{C}_{\mathrm{q}}\right), 126.9\left(\mathrm{C}_{\mathrm{q}}\right), 111.8$ $(\mathrm{CH}), 108.4(\mathrm{CH}), 63.5(\mathrm{CH}), 57.0\left(\mathrm{CH}_{2}\right), 56.3\left(\mathrm{CH}_{3}\right), 56.2\left(\mathrm{CH}_{3}\right), 53.0\left(\mathrm{CH}_{2}\right), 31.6$ $\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right)$ and $25.3\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}+) 246.1495\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}\right.$ requires 246.1494), 247 (15%), 245 (100), 217 (42), and 190 (35).

Synthesis of 2-(2-bromophenyl)- N-[2-(3,4-dimethoxyphenyl)ethyl]acetamide (12)

To a stirred solution of 2-bromophenylacetic acid ($20.0 \mathrm{~g}, 93 \mathrm{mmol}$) and oxalyl chloride ($12.3 \mathrm{~g}, 8.37 \mathrm{~mL}, 98 \mathrm{mmol}$) in DCM (200 mL) was added DMF (2 drops). The reaction was stirred until NMR had shown complete consumption of the 2bromophenylacetic acid, the solvent was then removed under reduced pressure to afford a pink solid which was redissolved in DCM $(30 \mathrm{~mL})$ and added dropwise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of 3,4- dimethoxyphenylethylamine ($16.7 \mathrm{~g}, 92.5 \mathrm{mmol}$)
\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
and $\mathrm{Et}_{3} \mathrm{~N}(11.3 \mathrm{~g}, 15.5 \mathrm{~mL}, 110 \mathrm{mmol})$ in $\mathrm{DCM}(168 \mathrm{~mL})$ over a period of 30 minutes. The resulting suspension was stirred for 1 h then washed with $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed in vacuo to afford 2-(2-bromophenyl)- N-[2-(3,4-dimethoxyphenyl)ethyl]acetamide $(33.0 \mathrm{~g}, 94 \%)$ as a white solid; mp 124-126 ${ }^{\circ} \mathrm{C}$; (Found: C, 57.07; H, 5.32; N, 3.63. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Br}$ requires $\mathrm{C}, 57.16 ; \mathrm{H}, 5.33 ; \mathrm{N}, 3.70 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3303,2937$, 1643, 1547, 1233 and 1024; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.54(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH})$, 7.30-7.22 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar} H$), 7.17-7.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 6.72 ($1 \mathrm{H}, \mathrm{d}, J$ 8.0, ArH), 6.65$6.57(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 3.45\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{NCH}_{2}\right)$ and $2.70\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{ArCH}_{2}\right)$; (100 MHz; $\left.\mathrm{CDCl}_{3}\right) 169.5\left(\mathrm{C}_{\mathrm{q}}\right), 149.0\left(\mathrm{C}_{\mathrm{q}}\right), 147.6\left(\mathrm{C}_{\mathrm{q}}\right), 134.8\left(\mathrm{C}_{\mathrm{q}}\right), 133.1(\mathrm{CH}), 131.6(\mathrm{CH})$, $131.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.1(\mathrm{CH}), 127.9(\mathrm{CH}), 124.9\left(\mathrm{C}_{\mathrm{q}}\right), 120.6(\mathrm{CH}), 111.8(\mathrm{CH}), 111.4(\mathrm{CH})$, $55.9\left(\mathrm{CH}_{3}\right)$, $55.8\left(\mathrm{CH}_{3}\right), 44.0\left(\mathrm{CH}_{2}\right), 40.9\left(\mathrm{CH}_{2}\right)$ and $40.8\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{EI}+) 377.0612$ $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{79} \mathrm{Br}\right.$ requires 377.0626) 376/378 (30\%), 164 (100) and 151 (74).

Synthesis of 1-(2-bromobenzyl)-6,7-dimethoxy-3,4-dihydroisoquinoline (13)

A suspension of 2-(2-bromophenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]acetamide $(32.0 \mathrm{~g}, 0.85 \mathrm{~mol})$ and $\mathrm{POCl}_{3}(13.0 \mathrm{~g}, 7.9 \mathrm{~mL}, 0.85 \mathrm{~mol})$ in toluene $(320 \mathrm{~mL})$ was heated at reflux for 12 h . The reaction was cooled to rt and diluted with EtOAc $(500 \mathrm{~mL})$ and washed with saturated $\mathrm{NaHCO}_{3}(3 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure to give a yellow oil. The oil was redissolved in EtOAc and 1-(2-bromobenzy)-6,7-dimethoxy-3,4-dihydroisoquinoline ($28.7 \mathrm{~g}, 94 \%$) was precipitated by the addition of hexanes as a pale yellow powder; $\mathrm{mp} 85-87{ }^{\circ} \mathrm{C}$; $v_{\max }$ (neat) $\mathrm{cm}^{-1} 3008,2359,2341$, 1514,1142 and $746 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.57(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.8, \mathrm{Ar} H)$, $7.26(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and 1.6, $\mathrm{Ar} H), 7.18(1 \mathrm{H}, \mathrm{td}, J 7.4$ and $1.6, \mathrm{Ar} H), 7.05(1 \mathrm{H}, \mathrm{td}, J$
\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
8.0 and 1.8, $\operatorname{ArH}), 6.91(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.66(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.88(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{NCH}_{2}\right)$ and $2.67(2 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{ArCH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 165.1\left(\mathrm{C}_{\mathrm{q}}\right), 150.7\left(\mathrm{C}_{\mathrm{q}}\right), 147.4\left(\mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 132.8$ $(\mathrm{CH}), 131.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.2(\mathrm{CH}), 128.2(\mathrm{CH}), 127.6(\mathrm{CH}), 124.5\left(\mathrm{C}_{\mathrm{q}}\right), 121.5\left(\mathrm{C}_{\mathrm{q}}\right), 110.2$ $(\mathrm{CH}), 109.2(\mathrm{CH}), 56.2\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{CH}_{3}\right), 47.4\left(\mathrm{CH}_{2}\right), 42.6\left(\mathrm{CH}_{2}\right)$ and $25.8\left(\mathrm{CH}_{2}\right)$; $m / z(\mathrm{EI}+) 358.0427\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}{ }^{79} \mathrm{Br}\right.$ requires 358.0443) 357/359(45\%), 280 (100) and 264 (28).

Synthesis of t-butyl-2-\{2-[(2-bromophenyl)acetyl]-4,5-dimethoxy phenyl\}ethylcarbamate (14)

$\mathrm{Boc}_{2} \mathrm{O}(4.31 \mathrm{~g}, 19.8 \mathrm{mmol})$ was added to a solution of 1-(2-bromobenzyl)-6,7-dimethoxy-3,4-dihydroisoquinoline ($4.75 \mathrm{~g}, 13.2 \mathrm{mmol}$) in DMF (38 mL) and heated to $90^{\circ} \mathrm{C}$ for 1.5 h . Water $(9.5 \mathrm{~mL})$ and $p-\mathrm{TsOH}(50 \mathrm{mg})$ were added carefully and the reaction heated to $130^{\circ} \mathrm{C}$ for 12 h . The solution was cooled to rt, diluted with EtOAc $(200 \mathrm{~mL})$ and washed with water $(4 \times 50 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo to give a brown solid which was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \quad\right.$ EtOAc-hexanes, $\left.20: 80\right)$ to afford t-butyl-2-\{2-[(2-bromophenyl)acetyl]-4,5-dimethoxy phenyl $\}$ ethylcarbamate ($4.4 \mathrm{~g}, 70 \%$) as a white solid; mp 94-95 ${ }^{\circ} \mathrm{C}$; (Found: C, 57.65; H, 5.88; N, 2.72. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{Br}$ requires C, $57.75 ; \mathrm{H}, 5.90 ; \mathrm{N}, 2.93 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3367,2859,1676,1661,1516$ and 1215 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.59(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.0, \mathrm{Ar} H), 7.34(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$, 7.33-7.25 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{Ar} H$), 7.18-7.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 6.77 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar} H$), 4.95 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 4.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36$ ($2 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{NCH}_{2}$), $2.99\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{ArCH}_{2}\right)$, and $1.40(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$; (75 MHz ; $\left.\mathrm{CDCl}_{3}\right) 198.0\left(\mathrm{C}_{\mathrm{q}}\right), 155.9\left(\mathrm{C}_{\mathrm{q}}\right), 151.6\left(\mathrm{C}_{\mathrm{q}}\right), 146.5\left(\mathrm{C}_{\mathrm{q}}\right), 135.2\left(\mathrm{C}_{\mathrm{q}}\right), 134.7\left(\mathrm{C}_{\mathrm{q}}\right), 132.9$ $(\mathrm{CH}), 131.5(\mathrm{CH}), 128.8\left(\mathrm{C}_{\mathrm{q}}\right), 128.6(\mathrm{CH}), 127.4(\mathrm{CH}), 124.7\left(\mathrm{C}_{\mathrm{q}}\right), 114.2(\mathrm{CH}), 112.3$ $(\mathrm{CH}), 78.6\left(\mathrm{C}_{\mathrm{q}}\right), 56.0\left(\mathrm{CH}_{3}\right), 55.8\left(\mathrm{CH}_{3}\right), 48.1\left(\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right)$ and 28.2
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
$\left(\mathrm{CH}_{3}\right) ; m / z\left(\right.$ LSIMS +) $476.1059\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5}{ }^{79} \mathrm{Br}\right.$ requires 476.1073) 477/479 (20 \%), 377/379 (55), 359/361 (45) and 207 (100).

Synthesis of potassium vinyltrifluoroborate

To a solution of trimethylborate ($6.96 \mathrm{~g}, 0.067 \mathrm{~mol}$) in THF (45 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a 1 M solution of vinylmagnesium bromide (54 mL). The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 minutes and warmed to $\mathrm{rt} . \mathrm{KHF}_{2}(20.91 \mathrm{~g}, 0.16 \mathrm{~mol})$ was added followed by water (35 mL). The suspension was warmed to rt and stirred for a further 30 minutes. The reaction was concentrated under reduced pressure. The residue was slurried in hot acetone $(100 \mathrm{~mL})$ and filtered, the filtrate was concentrated under reduced pressure to give a white solid which was dissolved in hot acetone $(50 \mathrm{~mL})$ and filtered, $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added and the white precipitate collected by filtration to afford potassium vinyltrifluoroborate $(5.07 \mathrm{~g}, 71 \%)$ as a white powder; $\mathrm{mp} 223{ }^{\circ} \mathrm{C}$ (decomp) (lit. ${ }^{2} 225^{\circ} \mathrm{C}$ decomp); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3052,2958,1620,1418$, 1098 and 1020; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; acetone) $5.82(1 \mathrm{H}, \mathrm{ddq}, J 20.1,13.8$ and 4.3, BCH), 5.45-5.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$) and 5.19-5.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}$); $\delta_{\mathrm{C}}(75 \mathrm{MHz}$; acetone) $124.4\left(\mathrm{~d}, J 5.0, \mathrm{CH}_{2}\right)$ and CH (not observed), δ_{F} (282 MHz ; acetone) -142.9 (q, J47.1); m / z (LSIMS-) 96 (94 \%).

Synthesis of t-butyl-2-\{3,4-dimethoxy-2-[(2-
vinylphenyl)acetyl]phenyl\}ethylcarbamate (16)

\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005

To a stirred suspension of t-butyl-2-\{2-[(2-bromophenyl)acetyl]-4,5-dimethoxy phenyl \} ethylcarbamate ($3.77 \mathrm{~g}, 8.2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.58 \mathrm{~g}, 11.5 \mathrm{mmol})$ in toluene / EtOH ($30 \mathrm{~mL} / 7.5 \mathrm{~mL}$) was added tetrakis (triphenylphosphine) palladium (0.28 g , $0.25 \mathrm{mmol})$ followed by potassium vinyltrifluoroborate ($1.63 \mathrm{~g}, 12.3 \mathrm{mmol}$). The mixture was heated at $80^{\circ} \mathrm{C}$ for 12 h , cooled to rt and filtered through celite. Removal of the solvent under reduced pressure gave a brown oil which was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}-\mathrm{hexanes}, 15: 85\right)$ to afford t-butyl-2-\{3,4-dimethoxy-2-[(2-vinylphenyl)acetyl]phenyl\}ethylcarbamate ($2.7 \mathrm{~g}, 80 \%$) as a white solid; mp 121-122 ${ }^{\circ} \mathrm{C}$; (Found: C, 70.41; H, 7.34; N, 3.23. $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{5}$ requires C , $70.57 ; \mathrm{H}, 7.34 ; \mathrm{N}, 3.29 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3360,2968,1667,1662,1518$ and 1126 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.52(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $2.2, \mathrm{Ar} H), 7.29-7.20(3 \mathrm{H}, \mathrm{m}, 3$ $\mathrm{x} \mathrm{Ar} H), 7.16(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and 1.2, $\mathrm{Ar} H), 6.82\left(1 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and $\left.11.2 \mathrm{CH}_{2}=\mathrm{C} H\right)$, $6.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar} H), 5.63\left(1 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and $\left.1.4, \mathrm{CH}=\mathrm{CH}_{\text {trans }} \mathrm{H}_{\text {cis }}\right), 5.28(1 \mathrm{H}, \mathrm{dd}, J$ 11.2 and $\left.1.4, \mathrm{CH}=\mathrm{CH}_{\text {trans }} H_{\text {cis }}\right)$, $4.96(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{N} H), 4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}\right), 3.91(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.32\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{NCH}_{2}\right), 2.93\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{ArCH}_{2}\right)$, and $1.40(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ;\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 199.4\left(\mathrm{C}_{\mathrm{q}}\right), 156.1\left(\mathrm{C}_{\mathrm{q}}\right), 151.8\left(\mathrm{C}_{\mathrm{q}}\right), 146.7$ $\left(\mathrm{C}_{\mathrm{q}}\right), 137.4\left(\mathrm{C}_{\mathrm{q}}\right), 134.9\left(\mathrm{C}_{\mathrm{q}}\right), 134.4(\mathrm{CH}), 132.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.7(\mathrm{CH}), 129.1\left(\mathrm{C}_{\mathrm{q}}\right), 128.0$ $(\mathrm{CH}), 127.6(\mathrm{CH}), 126.3(\mathrm{CH}), 116.7\left(\mathrm{CH}_{2}\right), 114.5(\mathrm{CH}), 112.5(\mathrm{CH}), 78.8\left(\mathrm{C}_{\mathrm{q}}\right), 56.2$ $\left(\mathrm{CH}_{3}\right), 56.0\left(\mathrm{CH}_{3}\right), 45.9\left(\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right)$ and $28.4\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}+) 425$ (3 \%), 306 (35), 292 (100) and 208 (80).

Synthesis

dimethoxyphenyl\}ethylcarbamate (10)

To a stirred solution of t-butyl-2-\{3,4-dimethoxy-2-[(2vinylphenyl)acetyl]phenyl\}ethylcarbamate $(2.70 \mathrm{~g}, 6.35 \mathrm{~mol})$ and $\mathrm{OsO}_{4}(40 \mathrm{mg}$, $0.16 \mathrm{mmol})$ in dioxane $(40 \mathrm{~mL})$ and water $(13.5 \mathrm{~mL})$ was added in small portions
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
sodium periodate $(2.87 \mathrm{~g}, 13.3 \mathrm{~mol})$ over a period of 1 h . The resulting suspension was stirred for 2 h then diluted with EtOAc (50 mL) and washed with water ($3 \times$ 10 mL), the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure to give a brown oil which was purified by flash column chromatography (SiO_{2}, EtOAc-hexanes, 25:75) to afford t-butyl-2-\{2-[(2-formylphenyl)acetyl]-3,4dimethoxyphenyl $\}$ ethylcarbamate ($2.2 \mathrm{~g}, 82 \%$) as a white solid; $\mathrm{mp} 40-41{ }^{\circ} \mathrm{C}$; v$\max ^{(n e a t)} / \mathrm{cm}^{-1} 3366,2972,1687$ (broad), 1512, 1263 and 1122; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\mathrm{Me}_{4} \mathrm{Si}$) 10.03 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), $7.86(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 1.4 , $\mathrm{Ar} H$), $7.60(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 2.0, $\operatorname{Ar} H)$, $7.54(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1.4, $\operatorname{Ar} H)$, $7.48(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 7.31(1 \mathrm{H}, \mathrm{d}, J$ 7.5, $\operatorname{Ar} H$), $6.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar} H), 4.96(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{N} H), 4.65\left(1 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}\right), 3.96(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.33\left(2 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{NCH}_{2}\right), 2.94(2 \mathrm{H}, \mathrm{t}, J 6.8$, ArCH_{2}), and $1.39(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$; ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $199.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $193.0(\mathrm{CH}), 156.1$ $\left(\mathrm{C}_{\mathrm{q}}\right), 151.6\left(\mathrm{C}_{\mathrm{q}}\right), 146.8\left(\mathrm{C}_{\mathrm{q}}\right), 136.4\left(\mathrm{C}_{\mathrm{q}}\right), 135.5(\mathrm{CH}), 134.4\left(\mathrm{C}_{\mathrm{q}}\right), 134.4\left(\mathrm{C}_{\mathrm{q}}\right), 133.7$ $(\mathrm{CH}), 132.9(\mathrm{CH}), 129.8\left(\mathrm{C}_{\mathrm{q}}\right), 127.8(\mathrm{CH}), 114.3(\mathrm{CH}), 112.5(\mathrm{CH}), 78.8\left(\mathrm{C}_{\mathrm{q}}\right), 56.2$ $\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{CH}_{3}\right), 46.2\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right)$ and $28.4\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (LSIMS+) $427.1995\left(\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{6}\right.$ requires 427.1995$) 427$ (10 \%), 410 (100), 354 (25) and 310 (35).

Synthesis of 2,3-dimethoxyberbine (11)

t-Butyl-2-\{2-[(2-formylphenyl)acetyl]-3,4-dimethoxyphenyl\}ethylcarbamate (0.10 g , $0.23 \mathrm{mmol})$ was stirred in freshly distilled formic acid $(0.9 \mathrm{~mL})$ for 1 h . The flask was then sealed and cooled to $0{ }^{\circ} \mathrm{C}$; triethylamine (0.15 mL) was added cautiously with vigorous shaking until all gas had redissolved. In a separate flask a mixture of (p cymene) ruthenium (II) chloride dimer ($0.7 \mathrm{mg}, 0.5 \mathrm{~mol} \%$) and ($1 R, 2 R$)-TsDPEN $(0.9 \mathrm{mg}, 1 \mathrm{~mol} \%)$, triethylamine (1 drop) and anhydrous acetonitrile $(0.6 \mathrm{~mL})$ were stirred at $40^{\circ} \mathrm{C}$ for 40 minutes The catalyst solution was transferred to the formic acid
\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
/ triethylamine solution and the mixture stirred at $28^{\circ} \mathrm{C}$ for 48 h . The mixture was made basic ($\mathrm{pH} 9-10$) with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with $\mathrm{DCM}(3 \times$ $25 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$-hexanes, $\left.40: 60\right)$ to afford 2,3-dimethoxyberbine ($45 \mathrm{mg}, 70 \%$) as a pale yellow oil which crystallised on standind; mp $210-217^{\circ} \mathrm{C}$ (lit. ${ }^{3} 236-238{ }^{\circ} \mathrm{C}$) $[\alpha]_{D}^{22}-17.5\left(c=0.01\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 2907, 1509,1257 , and 1136; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.17-7.13(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ar} H), 7.09-7.05(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar} H), 6.75(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 4.02\left(1 \mathrm{H}, \mathrm{d}, J 15.0, \mathrm{NCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Ar}\right)$, $3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{NCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{Ar}\right), 3.62(1 \mathrm{H}, \mathrm{dd}, J$ 11.0 and 4.4 ArCH), $3.33\left(1 \mathrm{H}, \mathrm{dd}, J 16.8\right.$ and 4.4, $\left.\mathrm{ArCHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Ar}\right)$, 3.19-3.10 $(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{ArCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{N}\right), 2.91\left(1 \mathrm{H}, \mathrm{dd}, 16.8\right.$ and 11.0, $\left.\mathrm{ArCHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Ar}\right)$ and 2.70-2.59 (2 $\left.\mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{N}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 147.5\left(\mathrm{C}_{\mathrm{q}}\right), 147.4\left(\mathrm{C}_{\mathrm{q}}\right), 134.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.7\left(\mathrm{C}_{\mathrm{q}}\right), 128.7(\mathrm{CH}), 126.2\left(\mathrm{C}_{\mathrm{q}}\right), 126.3(\mathrm{CH}), 126.2(\mathrm{CH}), 125.8(\mathrm{CH})$, $111.4(\mathrm{CH}), 108.6(\mathrm{CH}), 59.6(\mathrm{CH}), 58.6\left(\mathrm{CH}_{2}\right), 56.1\left(\mathrm{CH}_{3}\right), 55.8\left(\mathrm{CH}_{3}\right), 51.4\left(\mathrm{CH}_{2}\right)$, $36.8\left(\mathrm{CH}_{2}\right)$ and $29.1\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{EI}+) 294.1510\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}\right.$ requires 294.1494), 294 (100 \%), 190 (40), and 105 (45).
HPLC conditions; Chiracel OD column, $0.5 \mathrm{~mL} \mathrm{~min}^{-1}, \mathrm{EtOH} / c$-hexane $/ \mathrm{Et}_{2} \mathrm{NH}(9$: $90: 1), 12.40 \mathrm{~min}(55 \%)$ and $16.99 \mathrm{~min}(45 \%)$

t-Butyl-2-\{2-[(2-formylphenyl)acetyl]-3,4-dimethoxyphenyl\}ethylcarbamate $(0.10 \mathrm{~g}$, $0.23 \mathrm{mmol})$ was stirred in freshly distilled formic acid $(0.9 \mathrm{~mL})$ for 1 h . The flask was then sealed and cooled to $0^{\circ} \mathrm{C}$; triethylamine (0.15 mL) was added cautiously with vigorous shaking until all gas had redissolved. Acetonitrile (0.6 mL) and the Ruthenium catalyst 9 ($1 \mathrm{~mol} \%$) was added and the reaction stirred until complete by NMR (typically 2-3 h). The mixture was made basic ($\mathrm{pH} 9-10$) with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with DCM ($3 \times 25 \mathrm{~mL}$). The combined organics were
\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$-hexanes, $\left.40: 60\right)$ to afford 3,4-dimethoxyberbine ($48 \mathrm{mg}, 73 \%$) as a pale yellow oil; $[\alpha]_{D}^{22}-122.6$ ($c=$ 0.035 in 5 mL CHCl 3).

HPLC conditions; Chiracel OD column, $0.5 \mathrm{~mL} \mathrm{~min}^{-1}, \mathrm{EtOH} / c$-hexane / $\mathrm{Et}_{2} \mathrm{NH}(9$: $90: 1), 12.40 \mathrm{~min}(75 \%)$ and $16.99 \min (25 \%)$

Synthesis of \boldsymbol{t}-butyl-2-(4,5-dimethoxy-2-pent-4-enoylphenyl)-ethylcarbamate

A solution of 4-butenylmagnesium bromide ($0.99 \mathrm{~g}, 6.5 \mathrm{mmol}$) in THF (7.3 mL) was added to a solution of t-butyl-6,7-dimthoxy-1-oxo-3,4-dihydroisoquinoline- $2(1 \mathrm{H})$ carboxylate ($1.6 \mathrm{~g}, 5.2 \mathrm{mmol}$) in THF (32 mL) in one portion at rt . The resulting mixture was stirred for $1 \mathrm{~h}, 2 \mathrm{M} \mathrm{HCl}$ was added to acidify ($\mathrm{pH} 1-2$) and the phases separated, the aqueous phase was further extracted with DCM ($3 \times 25 \mathrm{~mL}$). The organics were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to afford a yellow oil which was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc-Hexanes, 15:85) to afford t-butyl-2-(4,5-dimetoxy-2-pent-4-enoylphenyl)ethylcarbamate ($1.48 \mathrm{~g}, 80 \%$) as a white solid; $\mathrm{mp} 49-51^{\circ} \mathrm{C}$ (Found: C, 66.07 ; H, 8.06; N, 3.77. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{5}$ requires $\mathrm{C}, 66.09 ; \mathrm{H}, 8.04 ; \mathrm{N}, 3.85 \%$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1}$ 3365, 2975, 2359, 1749, 1673 and 1514; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.19(1 \mathrm{H}, \mathrm{s}$, $\operatorname{Ar} H), 6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 5.88\left(1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.4\right.$ and $\left.7.0, \mathrm{H}_{2} \mathrm{C}=\mathrm{C} H\right), 5.07(1 \mathrm{H}$, dd, $J 17.1$ and $\left.1.6, \mathrm{C}=\mathrm{C}_{\text {trans }} \mathrm{H}_{\mathrm{cis}}\right), 5.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 5.02(1, \mathrm{dd}, J 10.4$ and 1.6, $\mathrm{C}=\mathrm{CH}_{\text {trans }} H_{\mathrm{cis}}$), $3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.37\left(2 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{NCH}_{2}\right)$, $2.99\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{ArCH}_{2}\right), 2.97\left(2 \mathrm{H}, \mathrm{t}, J 6.0, \mathrm{COCH}_{2}\right), 2.46(2 \mathrm{H}, \mathrm{q}, J 7.0$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right)$ and $1.42(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 202.2\left(\mathrm{C}_{\mathrm{q}}\right), 156.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $151.9\left(\mathrm{C}_{\mathrm{q}}\right), 147.2\left(\mathrm{C}_{\mathrm{q}}\right), 137.6(\mathrm{CH}), 134.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.2\left(\mathrm{C}_{\mathrm{q}}\right), 115.8\left(\mathrm{CH}_{2}\right), 114.7(\mathrm{CH})$, $112.6(\mathrm{CH}), 79.3\left(\mathrm{C}_{\mathrm{q}}\right), 56.6\left(\mathrm{CH}_{3}\right), 56.4\left(\mathrm{CH}_{3}\right), 42.6\left(\mathrm{CH}_{2}\right), 40.7\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right)$, $29.9\left(\mathrm{CH}_{2}\right)$, and $28.8\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}+) 363.2046\left(\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{5}\right.$ requires 363.2050$), 364$ (35%), 363 (30), 308 (35), 290 (45), 247 (75), 208 (75), 132 (40) and 84 (100).

Synthesis of t-butyl-2-[4,5-dimethoxy-2-(4-oxobutanoyl)phenyl]-ethylcarbamate

 (23)

To a stirred solution of t-butyl-2-(4,5-dimetoxy-2-pent-4-enoylphenyl)ethylcarbamate $(1.0 \mathrm{~g}, 2.7 \mathrm{mmol})$ in THF $(27 \mathrm{~mL})$ was added dropwise a solution of $\mathrm{KMnO}_{4}(0.87 \mathrm{~g}, 5.5 \mathrm{mmol})$ in water (20 mL) over a period of 30 minutes Periodic acid $(0.68 \mathrm{~g}, 3.0 \mathrm{mmol})$ was added in 1 portion and the suspension stirred for 1 h . The mixture was filtered through a pad of celite, the filtrate was diluted with brine (5 mL) and the phases separated, the aqueous phase was further extracted with DCM ($3 \times$ 25 mL), the organics were comined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to afford a yellow oil which was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \quad\right.$ EtOAc-Hexanes, 15:85) to afford t-butyl-2-[4,5-dimethoxy-2-(4-oxobutanoyl)phenyl]-ethylcarbamate $(0.71 \mathrm{~g}, 71 \%)$ as a white solid; $\mathrm{mp} 65-66{ }^{\circ} \mathrm{C}$; (Found: C, 62.29; H, 7.45; N, 3.78. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{6}$ requires $\mathrm{C}, 62.45 ; \mathrm{H}, 7.45 ; \mathrm{N}$, 3.83%); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3365,2970,1674,1711,1518$ and $1129 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; CDCl_{3}; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 9.90(1 \mathrm{H}, \mathrm{s}, H \mathrm{HCO}), 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 4.98(1 \mathrm{H}$, br s, NH), 3.93 ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}$), $3.35\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{NCH}_{2}\right), 3.32(2 \mathrm{H}, \mathrm{t}, J 5.9$, $\left.\mathrm{ArCOCH}_{2}\right), 2.97\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.92\left(2 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{HCOCH}_{2}\right), 1.41(9 \mathrm{H}, \mathrm{s}$, $t-\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 201.2(\mathrm{CH}), 200.3\left(\mathrm{C}_{\mathrm{q}}\right), 156.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.2\left(\mathrm{C}_{\mathrm{q}}\right), 147.2$ $\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.7\left(\mathrm{C}_{\mathrm{q}}\right), 114.7(\mathrm{CH})$, $112.7(\mathrm{CH})$, $79.3\left(\mathrm{C}_{\mathrm{q}}\right) 56.6\left(\mathrm{CH}_{3}\right)$, 56.4 $\left(\mathrm{CH}_{3}\right), 42.4\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right)$ and $29.8\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}+)$ 366 (10 \%), 310 (20), 266 (35), 248 (100), 179 (45) and 55 (35).
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005

Synthesis of 5,6-dihydro-8,9-dimethoxypyrrole[2,1-a]isochinolin (24)

t-Butyl-2-[4,5-dimethoxy-2-(4-oxobutanoyl)phenyl]-ethylcarbamate $\quad(0.10 \mathrm{~g}$, 0.20 mmol) was stirred in TFA (1 mL) for $1 \mathrm{~h}, 2 \mathrm{M} \mathrm{NaOH}$ was added to adjust pH to $8-9$, the resulting precipitate was filtered off and washed with hexane (2 mL). The solids were recrystalised from EtOAc / hexanes to afford 5,6-dihydro-8,9dimethoxypyrrole $[2,1-\alpha]$ isochinolin ($62 \mathrm{mg}, 99 \%$) as colourless plates; mp 130$132^{\circ} \mathrm{C}$ (lit. ${ }^{4} 132-133{ }^{\circ} \mathrm{C}$); (Found: C, 73.32; H, 6.70; N, 5.93. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C , 73.34; H, 6.59; N, 6.11%); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3102,2953,2558,1552$ and $1504 ; \delta_{\mathrm{H}}$ ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $7.02(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$, $6.70(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.64$ ($1 \mathrm{H}, \mathrm{dd}, J 2.6$ and 1.7, pyrrole H), $6.39(1 \mathrm{H}$, dd, $J 3.6$ and 1.7, pyrrole $H), 6.20(1 \mathrm{H}, \mathrm{dd}, J 3.6$ and 2.6, pyrrole H), $4.04\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{ArCH}_{2}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $2.97\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{NCH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 148.6\left(\mathrm{C}_{\mathrm{q}}\right), 147.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.3$ $\left(\mathrm{C}_{\mathrm{q}}\right), 123.2\left(\mathrm{C}_{\mathrm{q}}\right), 122.9\left(\mathrm{C}_{\mathrm{q}}\right), 120.8(\mathrm{CH}), 111.7(\mathrm{CH}), 108.7(\mathrm{CH}), 106.3(\mathrm{CH}), 102.7$ $(\mathrm{CH}), 56.4\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 44.7\left(\mathrm{CH}_{2}\right)$ and $29.5\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{EI}+) 229(100 \%)$ and 214 (45).

1) Meyers, A. I.; Du, B.; Gonzalez, M. A. J. Org. Chem., 1990, 55, 4218-4220.
2) Molander, G. A.; Rivero, M. R. Org. Lett., 2002, 4, 107-109/
3) Dean, R. T.; Rapoport, H. J. Org. Chem., 1977, 43, 2115-2122.
4) Moreno, I.; Tellitu, I.; Dominguez, E.; SanMartin, R. Eur. J. Org. Chem., 2002, 2126-2135.
