Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Supplementary data

A fluorescent molecular logic gate with multiply-configurable dual outputs[†]

Yasuhiro Shiraishi,* Yasufumi Tokitoh and Takayuki Hirai

A fluorescent molecular logic gate with multiply-configurable dual outputs

Yasuhiro Shiraishi,* Yasufumi Tokitoh, and Takayuki Hirai

Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan. E-mail: shiraish@cheng.es.osaka-u.ac.jp

Electronic Supplementary Information (ESI†)

Table S1. Stepwise protonation constants of L determined in aqueous NaCl (0.15 M) solution at 298 K.^a

Reaction ^b	
$\mathrm{H} + \mathrm{L} \leftrightarrow \mathrm{H}\mathrm{L}$	9.45 ± 0.06
$\mathrm{H} + \mathrm{HL} \leftrightarrow \mathrm{H}_2 \mathrm{L}$	7.55 ± 0.16
$H + H_2 L \leftrightarrow H_3 L$	6.01 ± 0.30
Log β	23.01

^{*a*} Potentiometric measurements were carried out in aqueous NaCl (0.15 M) solution at 298 K. The program HYPERQUAD (Sabatini, A.; Vacca, A.; Gans, P. *Coord. Chem. Rev.* **1992**, *120*, 389–405.) was used for determination of the protonation constants.

^b Charges are omitted for clarity.

Table S2. Stability constants for interaction between L and metal cations $(Zn^{2+}, Hg^{2+}, Cu^{2+}, and Ag^+)$ determined in aqueous NaCl (0.15 M) solution at 298 K.^{*a*}

Reaction ^b	Zn^{2+}	Hg^{2+}	Cu^{2+}	Ag^+
$M + L \leftrightarrow ML$	8.92 ± 0.05	24.9 ± 0.12	17.6 ± 0.31	7.20 ± 0.17
$ML + H \leftrightarrow MHL$	6.97	4.3	3.81	8.39
$M + LH \leftrightarrow MHL$	6.84	20.1	12.4	6.54
$ML + OH \leftrightarrow ML(OH)$	4.41	8.00	10.0	4.84
$ML(OH) + OH \leftrightarrow ML(OH)_2$	4.80	6.38	9.59	_
$ML(OH)_2 + OH \leftrightarrow ML(OH)_3$	_	_	4.74	_
$M + L + H_2O \leftrightarrow ML(OH) + H$	-0.47 ± 0.24	19.1 ± 0.15	13.8 ± 0.27	-1.76 ± 0.13

^{*a*} Potentiometric measurements were carried out in aqueous NaCl (0.15 M) solution at 298 K. The program HYPERQUAD (Sabatini, A.; Vacca, A.; Gans, P. *Coord. Chem. Rev.* **1992**, *120*, 389–405.) was used for determination of the stability constants.

^b Charges are omitted for clarity.

Fig. S1 (A) pH-dependent change in fluorescence spectra ($\lambda_{ex} = 402 \text{ nm}$) of L (70 µM) in the presence of 1.0 eq. $\mathbb{Z}n^{2+}$ in aqueous NaCl (0.15 M) solution at 298 K. (B) Mole fraction distribution of the species and intensities of the fluorescence emissions at $\lambda_{em} = 416 \text{ nm}$ [blue: $I_F(\text{Out}_1)$] and 520 nm [red: $I_F(\text{Out}_2)$]. The emission intensity of L in the absence of metals at pH 8 monitoring at 416 nm [$I_F(\text{Out}_1)$] is set as 1. The emission intensity of L in the absence of metals at pH 10 monitoring at 520 nm [$I_F(\text{Out}_2)$] is set as 1. (C) Absorption and (D) excitation spectra ($\lambda_{em} = 520 \text{ nm}$).

Fig. S2 (A) Fluorescence ($\lambda_{ex} = 402 \text{ nm}$), (B) absorption, and (C) excitation spectra ($\lambda_{em} = 520 \text{ nm}$) of L (70 µM) dissolved in various solvents of pH 11.0 at 298 K in the presence of 1.0 eq Zn²⁺. The respective solvents are: (a) water, (b) water/acetonitrile (9/1 v/v), and (c) water/acetonitrile (1/1 v/v).

Fig. S3 (A) pH-dependent change in fluorescence spectra ($\lambda_{ex} = 402 \text{ nm}$) of L (70 µM) in the presence of 1.0 eq. Hg²⁺ in aqueous NaCl (0.15 M) solution at 298 K. (B) Mole fraction distribution of the species and intensities of the fluorescence emissions at $\lambda_{em} = 416 \text{ nm}$ [blue: $I_F(\text{Out}_1)$] and 520 nm [red: $I_F(\text{Out}_2)$]. The emission intensity of L in the absence of metals at pH 8 monitoring at 416 nm [$I_F(\text{Out}_1)$] is set as 1. The emission intensity of L in the absence of metals at pH 10 monitoring at 520 nm [$I_F(\text{Out}_2)$] is set as 1. (C) Absorption and (D) excitation spectra ($\lambda_{em} = 520 \text{ nm}$).

Fig. S4 (A) pH-dependent change in fluorescence spectra ($\lambda_{ex} = 402 \text{ nm}$) of L (70 µM) in the presence of 1.0 eq. Cu²⁺ in aqueous NaCl (0.15 M) solution at 298 K. (B) Mole fraction distribution of the species and intensities of the fluorescence emissions at $\lambda_{em} = 416 \text{ nm}$ [blue: $I_F(\text{Out}_1)$] and 520 nm [red: $I_F(\text{Out}_2)$]. The emission intensity of L in the absence of metals at pH 8 monitoring at 416 nm [$I_F(\text{Out}_1)$] is set as 1. The emission intensity of L in the absence of metals at pH 10 monitoring at 520 nm [$I_F(\text{Out}_2)$] is set as 1. (C) Absorption and (D) excitation spectra ($\lambda_{em} = 520 \text{ nm}$).

Fig. S5 (A) pH-dependent change in fluorescence spectra ($\lambda_{ex} = 402 \text{ nm}$) of L (70 µM) in the presence of 1.0 eq. Ag⁺ in aqueous NaCl (0.15 M) solution at 298 K. (B) Mole fraction distribution of the species and intensities of the fluorescence emissions at $\lambda_{em} = 416 \text{ nm}$ [blue: $I_F(\text{Out}_1)$] and 520 nm [red: $I_F(\text{Out}_2)$]. The emission intensity of L in the absence of metals at pH 8 monitoring at 416 nm [$I_F(\text{Out}_1)$] is set as 1. The emission intensity of L in the absence of metals at pH 10 monitoring at 520 nm [$I_F(\text{Out}_2)$] is set as 1. (C) Absorption and (D) excitation spectra ($\lambda_{em} = 520 \text{ nm}$).

Fig. S6 Fluorescence spectra ($\lambda_{ex} = 402 \text{ nm}$) of L (70 μ M) in the absence and presence of 1 eq. Cd²⁺ in aqueous NaCl (0.15 M) solution at 298 K, truth table, and logic scheme.

Fig. S7 Fluorescence spectra ($\lambda_{ex} = 402 \text{ nm}$) of L (70 μ M) in the absence and presence of 1 eq. Co²⁺ in aqueous NaCl (0.15 M) solution at 298 K, truth table, and logic scheme.

Fig. S8 Fluorescence spectra ($\lambda_{ex} = 402 \text{ nm}$) of L (70 μ M) in the absence and presence of 1 eq. Ni²⁺ in aqueous NaCl (0.15 M) solution at 298 K, truth table, and logic scheme.

Fig. S9 ¹H NMR spectra of L obtained in the absence and presence of metal cations (1 eq.) in D_2O (pH = pD - 0.4).