Supplementary data

Protonated N'-benzyl-N'-prolyl Proline Hydrazide as Highly Enantioselective **Catalyst for Direct Asymmetric Aldol Reaction**

Chuanling Cheng,^{a,d,e} Jian Sun,*^a Chao Wang,^{a,e} Yu Zhang,^{a,e} Siyu Wei,^a Fan Jiang^b and Yundong Wu*^{b,c} ^a Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Fax: +86-28-85222753; Tel:

^e Graduate School of Chinese Academy of Sciences, Beijing, China

sunjian@cib.ac.cn

Table of Contents	Page
Generalities:	S2
Experimental details, characterization of new compounds:	S2
Selected NMR Spectra of 1-15:	S 9
HPLC spectra of 16a-g:	S18
X-ray crystallographic data of 12:	S32
Cartesian coordinates of the structures of enamine intermediates	
and transition states related to 15 and 12:	S33

Generalities: NMR spectra were recorded on a Brucker-600 MHz spectrometer. Optical rotations were measured on a Perkin-Elmer 341 Polarimeter at $\lambda = 589$ nm. ESIMS spectra were recorded on BioTOF Q. HPLC analyses were performed on PerkinElmer (Series 200 UV/VIS Detector and Series 200 Pump). Chiralpak AS-H and OJ-H columns were purchased from Daicel Chemical Industries, LTD. Acetone was dried over anhydrous K₂CO₃ and then was distilled by adding P₂O₅. Hexane and ethyl acetate for column chromatography were distilled before use. Reactions were monitored by thin layer chromatography using silica gel HSGF254 plates. Chemical shifts were reported in ppm using the solvent residue signals as reference.

Materials: All starting materials were of the highest commercially available grade and used without further purification.

Procedure for the synthesis of Boc-1: To a solution of Boc-L-Pro (430 mg, 2.0 mmol) in DCM (20 mL) was added 4-nitrophenylhydrazine (370 mg, 2.4 mmol), HOBt (350 mg, 2.4 mmol), N, N-Diisopropylethylamine (DIEA, 700 μ L) and EDCI (460 mg, 2.4 mmol) at 0 °C. The reaction mixture was stirred at 25 °C for 12 h, and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), aqueous HCl (1.0 M, 10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 1: 1) to give **Boc-1**.

Procedure for the synthesis of 1: After compound **Boc-1** (1.0 g) with a mixture of TFA: CH_2Cl_2 (1: 2, 20 mL) was stirred for half an hour, the solution was evaporated to dryness and then passed through a H⁺ ion-exchange resin column eluted with NH₃·H₂O (3.0 M). After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: MeOH = 20: 1) to give **1**.

1: Yellow solid; Yield: 60%; $[\alpha]_D^{25} = -79.9$ (c = 0.244, MeOH); mp 153.0-154.0 ; ¹HNMR (600 MHz, CD₃OD) δ (ppm) 1.80-1.91 (m, 3H), 2.20-2.23 (m, 1H), 2.93-2.97 (m, 1H), 3.06-3.10 (m, 1H), 3.76 (dd, J = 2.82 Hz, 5.7 Hz, 1H), 6.80 (d, J = 9.12 Hz, 2H), 8.10 (d, J = 9.18 Hz, 2H); ¹³CNMR (150 MHz, CD₃OD) δ (ppm) 25.6, 30.1, 46.6, 59.2, 110.6, 125.4, 139.5, 154.3, 175.0. ESI HRMS exact mass calcd for (C₁₁H₁₄N₄O₃ + H)⁺ requires m/z 251.1139, found m/z 251.1122.

Procedure for the synthesis of 2 is similar to that for 1.

2: yellow solid; Yield: 78%; $[\alpha]_D^{25} = -39.5$ (c = 0.238, MeOH); mp 198-200 ; The ¹H and ¹³C NMR spectra showed a double set of peaks due to different conformers. ¹HNMR (600 MHz, CD₃OD) δ (ppm) 1.99-2.18 (m, 3H), 1.94 (brs, 1H), 2.43 (m, 1H), 3.34-3.38 (m, 2H), 4.40-4.63 (m, 1H), 6.83 (m, 5H); ¹³CNMR (150 MHz, CD₃OD) δ (ppm) 23.6, 23.7, 28.9, 29.6, 45.9, 46.0, 58.5, 58.8, 112.6, 112.8, 120.1, 120.7, 128.7, 129.0, 147.5, 148.1, 168.6, 173.0. ESI HRMS exact mass calcd for (C₁₁H₁₅N₃O₁ + H)⁺ requires m/z 206.1288, found m/z 206.1279.

Procedure for the synthesis of Boc-L-Pro-NHNH₂: Compound **Boc-4** (see procedure for the synthesis of Boc-4) (1.0 g), 5% Pd/C (0.1 g) and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until **Boc-4** disappeared completely (monitored by TLC), the solution was filtered. Removal of solvent gave Boc-L-Pro-NHNH₂.

Procedure for the synthesis of Boc-3: To a mixture of solution of Boc-L-Pro-NHNH₂ (460 mg, 2.0 mmol) and TEA (1.4 mL, 10 mmol) in DCM (20 mL) was added benzyl bromide (1.2 mL, 10 mmol) at room temperature. The reaction mixture was stirred at room temperature for 12 h and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (30 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), and brine (10 mL), and dried over

anhydrous Na_2SO_4 . After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 1: 1) to give **Boc-3**.

Procedure for the synthesis of 3: Compounds **Boc-3** (1.0 g) was treated with a mixture of TFA: CH_2Cl_2 (1: 2, 20 mL) for half an hour and then concentrated under reduced pressure. After saturated aqueous NaHCO₃ (10 mL) was added to the residue, the solution was extracted three times with EtOAc (30 mL each). The organic layers were combined, washed with brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: MeOH = 20: 1) to give **3**

3: white solid; Yield: 66%; $[\alpha]_D^{25} = -19.8$ (c = 0.242, MeOH); mp 204-206 ; ¹HNMR (600 MHz, CD₃OD) The ¹H and ¹³C NMR spectra show a double set of peaks due to different conformers. $\overline{\mathbf{\delta}}$ (ppm) 1.12-1.23 (m, 1H), 1.58 (m, 2H), 1.90 (m, 1H), 3.13 (m, 2H), 3.87 (m, 1H), 3.95 (m, 2H), 4.07 (m, 2H), 7.24 (m, 10H); ¹³CNMR (150 MHz, CD₃OD) $\overline{\mathbf{\delta}}$ (ppm) 23.2, 23.4, 28.6, 29.7, 45.8, 46.2, 57.7, 58.4, 60.8, 61.6, 62.3, 127.3, 127.9, 128.3, 129.1, 129.8, 136.0, 136.2, 136.8, 166.8, 171.2. ESI HRMS exact mass calcd for (C₁₉H₂₄N₃O₁ + H)⁺ requires m/z 310.1914, found m/z 310.1924.

Procedure for the synthesis of Boc-4: To a solution of Boc-L-Pro (430 mg, 2.0 mmo) in DCM (20 mL) was added benzyloxycarbonylhydrazine (400 mg, 2.4 mmol), HOBt (350 mg, 2.4 mmol), N,N-diisopropylethylamine (DIEA, 700 μ L) and EDCI (460 mg, 2.4 mmol) at 0 °C. The reaction mixture was stirred at 25 °C for 12 h, and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), aqueous HCl (1.0 M, 10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 1: 1) to give **Boc-4**.

Procedure for the synthesis of 4: Compound **Boc-4** (1.0 g) was treated with a mixture of TFA: CH_2Cl_2 (1: 2, 20 mL) for half an hour and then concentrated under reduced pressure. After saturated aqueous NaHCO₃ (10 mL) was added to the residue, the solution was extracted three times with EtOAc (30 mL each). The organic layers were combined, washed with brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: MeOH = 20: 1) to give **4**.

4: Off-white solid; Yield: 63%; $[\alpha]_D^{25} = -33.3$ (c = 0.766, EtOAc); ¹HNMR (600 MHz, CDCl₃) δ (ppm) 1.66-1.75 (brs, 1H), 1.94 (brs, 1H), 2.09 (m, 1H), 2.95 (m, 2H), 3.80 (m, 1H), 5.10-5.16 (m, 2H), 7.31-7.34 (m, 5H); ¹³CNMR (150 MHz, CDCl₃) δ (ppm) 26.0, 30.5, 38.1, 47.2, 59.8, 67.6, 128.2, 128.3, 128.5, 135.7, 156.1, 174.6. ESI HRMS exact mass calcd for (C₁₃H₁₇N₃O₃ + Na)⁺ requires m/z 286.1162, found m/z 286.1148.

Procedure for the synthesis of 5 is similar to that for 4.

5: Off-white solid; Yield: 70%; $[\alpha]_D^{25} = -46.8 (c = 0.434, MeOH); {}^{1}HNMR (600 MHz, CDCl_3) \delta$ (ppm) 1.76-1.84 (m, 2H), 1.86-1.92 (m, 1H), 1.99 (s, 1H), 2.12-2.17 (m, 1H), 2.90-2.94 (m, 1H), 3.03-3.07 (m, 1H), 3.73 (dd, J = 6.06 Hz, 8.40 Hz, 1H); {}^{13}CNMR (150 MHz, CD_3OD) \delta (ppm) 19.1, 25.4, 30.5, 46.5, 59.2, 170.3, 174.0. ESI HRMS exact mass calcd for $(C_7H_{13}N_3O_2 + Na)^+$ requires m/z 194.0900, found m/z 194.0910.

Procedure for the synthesis of 6: To a mixture of solution of Boc-L-Pro-NHNH₂ (460 mg, 2.0 mmol) and TEA (1.4 mL, 10 mmol) in DCM (20 mL) was slowly added TFAA (600 μ L, 4.0 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 0.5 h, quenched with MeOH and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (30 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), aqueous HCl (1.0 M, 10 mL) and brine (10 mL),

and dried over anhydrous Na_2SO_4 . After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 1: 1) to give **Boc-6**.

Compound **Boc-6** (1.0 g) reacted with a mixture of TFA: CH_2Cl_2 (1: 2, 20 mL) for half an hour and then concentrated under reduced pressure. The residue was purified through column chromatography on silica gel (eluent: DCM: MeOH) = 10:1 to give **6**.

6: white solid; Yield: 66%; $[α]_D^{25^=}$ -8.6 (c = 0.51, MeOH); mp 208-210 ; ¹HNMR (600 MHz, CD₃OD) δ (ppm) 2.08-2.18 (m, 3H), 2.46-2.52 (m, 1H), 3.34-3.38 (m, 1H), 3.40-3.45 (m, 1H), 4.38 (dd, *J* = 6.6 Hz, 8.28 Hz, 1H), 3.03-3.07 (m, 1H), 3.73-3.96 (m, 1H); ¹³CNMR (150 MHz, CD₃OD) δ (ppm) 23.5, 29.4, 46.0, 58.6, 114.9, 116.8, 156.4, 156.7, 167.6. ESI HRMS exact mass calcd for (C₇H₁₀F₃N₃O₃ + H)⁺ requires m/z 226.0798, found m/z 226.0789.

Procedure for the synthesis of Z-L-Pro-NHNH₂: To a solution of Z-L-Pro (500 mg, 2 mmol) in DMF (20 mL) was added NH₂NH₂2HCl (250mg, 2.4 mmol), HOBt (350 mg, 2.4mol), DIEA (1.4 mL) and EDCI (460 mg, 2.4 mmol) at 0 °C. The reaction mixture was stirred at 25 °C for 24h, and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), aqueous HCl (1.0 M, 10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: ethyl acetate = 4: 1) to give **Z-L- Pro-NHNH₂**.

Procedure for the synthesis of Z-7: To a solution of 1-Z-4-Boc-L-Piperazine-2-carboxylic acid (730 mg, 2 mmol) in DCM (20 mL) was added Z-L-Pro-NHNH₂ (631 mg, 2.4 mmol), HOBt (350 mg, 2.4mol), DIEA (1.4 mL) and EDCI (460 mg, 2.4 mmol) at 0 °C. The reaction mixture was stirred at 25 °C for 24h, and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), aqueous HCl (1.0 M, 10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: Hexane: ethyl acetate = 1: 1) to give **Z-7**.

Procedure for the synthesis of 7: Compound Z-7 (1.0 g), 5% Pd/C (0.1 g) and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until Z-7 disappeared completely (monitored by TLC), the solution was filtered. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: MeOH = 10:1) to give 7.

7: off-white solid; Yield: 50%; $[\alpha]_D^{25} = +46.6$ (c = 0.336, MeOH); mp 64.7-67.7 ; ¹HNMR (600 MHz, CD₃OD) δ (ppm)1.46 (s, 9H), 1.77-1.85 (m, 2H), 1.89-1.94 (m, 1H), 2.13-2.19 (m, 1H), 2.67-2.71 (m, 1H), 2.93-3.10 (m, 5H), 3.37 (dd, J = 3.36 Hz, 9.54 Hz, 1H), 3.75-3.78 (m, 2H), 4.06 (brs, 1H); ¹³C NMR (150 MHz, CD₃OD) δ (ppm) 25.2, 27.2, 30.4, 43.5, 46.4, 56.9, 59.3, 80.1, 94.3, 154.9, 169.9, 172.9. ESI HRMS exact mass calcd for (C₁₅H₂₇N₅O₄ + Na)⁺ requires m/z 364.1955, found m/z 364.1939.

Procedure for the synthesis of Z-8: To a solution of pyridine-2-carboxylic acid (295 mg, 2.4 mmol) in DCM (20 mL) was added Z-L-Pro-NHNH₂ (530 mg, 2 mmol), HOBt (350 mg, 2.4mol), N,N-Diisopropylethylamine (DIEA, 700µL) and EDCI (460 mg, 2.4 mmol) at 0 °C. The reaction mixture was stirred at 25°C for 12 h, and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), aqueous HCl (1.0 M, 10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. After removal

of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 1: 1) to give **Z-8**

Procedure for the synthesis of 8: Compound **Z-8** (1.0 g), 5% Pd/C (0.1 g) and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until **Z-8** disappeared completely (monitered by TLC), the solution was filtered. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: MeOH = 10: 1) to give **8**.

8: Yellow solid; Yield: 55%; $[\alpha]_D^{25} = -20$ (c = 0.12, MeOH); The ¹H and ¹³CNMR spectra show a double set of peaks in a ratio of about 2: 1 due to different conformers. ¹HNMR (600 MHz, CD₃OD) $\overline{\mathbf{0}}$ (ppm) 1.81-1.96 (m, 2H), 2.02-2.07 (m, 1H), 2.21-2.27 (m, 1H), 2.90 (m, 1H), 3.02 (m, 1H), 3.96 and 4.07 (dd, J = 6.06Hz, 8.46 Hz, and q, J = 4.62 Hz, 1H), 7.55-7.62 (m, 1H), 7.95-8.00 (m, 1H), 8.09-8.11 (m, 1H), 8.63-8.68 (m, 1H); ¹³CNMR (150 MHz, CD₃OD) $\overline{\mathbf{0}}$ (ppm) 24.5, 24.8, 29.3, 30.1, 46.3, 59.7, 61.4, 121.9, 122.4, 126.6, 127.0, 137.4, 148.6, 149.1, 162.5, 164.7, 170.4, 173.8. ESI HRMS exact mass calcd for (C₁₁H₁₄N₄O₂ + H)⁺ requires m/z 235.1190, found m/z 235.1203.

Procedure for the synthesis of Boc-9: To a solution of Z-L-Phenylalanine (400 mg, 2.4 mmol) in DCM (20 mL) was added L-Boc-Pro-NHNH₂ (460 mg, 2 mmol), HOBt (350 mg, 2.4mol), DIEA (700 μ L) and EDCI (460 mg, 2.4 mmol) at 0 °C. The reaction mixture was stirred at 25 °C for 24h, and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), aqueous HCl (1.0 M, 10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 1: 1) to give **Boc-9**.

Procedure for the synthesis of 9 is similar to that for 1.

9: white solid; Yield: 61%; $[\alpha]_D^{25} = -48.9$. (c = 0.552, MeOH); mp 153.7-154.7 ; ¹HNMR (600 MHz, CD₃OD and CDCl₃) δ (ppm) 1.79-1.87 (m, 2H), 1.91-1.97 (m, 1H), 2.15-2.20 (m, 1H), 2.88 (dd, J = 9.9 Hz, 13.86 Hz, 1H), 2.94-2.98 (m, 1H), 3.08-3.12 (m, 1H), 3.22 (dd, J = 4.74 Hz, 13.92 Hz, 1H), 3.79 (dd, J = 6.12 Hz, 8.70 Hz, 1H), 4.48 (dd, J = 4.74 Hz, 9.72 Hz, 1H), 4.99-5.05 (m, 2H), 7.19-7.33 (m, 10H); ¹³CNMR (150 MHz, CD₃OD and CDCl₃) δ (ppm) 25.2, 30.4, 37.8, 46.5, 55.1, 59.3, 66.2, 126.3, 127.3, 127.5, 128.0, 128.3, 129.2, 136.7, 137.1, 156.8, 170.9, 172.7. ESI HRMS exact mass calcd for (C₂₂H₂₆N₄O₄ + H)⁺ requires m/z 411.2027, found m/z 411.2006.

Procedure for the synthesis of Boc-10: Compound **Boc-9** (1.0 g), 5% Pd/C (0.1 g) and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until **Boc-9** disappeared completely (monitored by TLC), the solution was filtered. After removal of solvent under reduced pressure, the residue was diluted with DCM. The solution was added TEA (1.4mL, 10 mmol) and TFAA (600 μ L, 4.0mmol) at 0 °C. The reaction mixture was stirred at 0°C for 0.5h, quenched with MeOH, and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (30 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), aqueous HCl (1.0 M, 10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 1: 1) to give **Boc-10**.

Procedure for the synthesis of 10: Compound **Boc-10** (1.0 g) reacted with a mixture of TFA: CH_2Cl_2 (1: 2, 20 mL) for an hour and then concentrated under reduced pressure. The residue was purified through column chromatography on silica gel (eluent: DCM: MeOH = 10: 1) to give **10**.

10: white solid; Yield: 63%; $[\alpha]_D^{25} = -22.6$ (c = 0.212, MeOH); mp 194-196 ; ¹HNMR (600 MHz,

CD₃OD) δ (ppm) 1.97-2.04 (m, 2H), 2.05-2.19 (m, 1H), 2.32-2.38 (m, 1H), 2.99 (dd, J = 10.02 Hz, 14.10 Hz, 1H), 3.18-3.22 (m, 1H), 327-3.30 (m, 1H), 4.13-4.14 (brs, 1H), 4.76 (dd, J = 5.16 Hz, 9.78 Hz, 1H), 7.21-7.25 (m 1H), 7.26-7.32 (m, 4H); ¹³CNMR (150 MHz, CD₃OD) δ (ppm) 24.2, 29.8, 37.0, 46.2, 53.4 and 53.5, 58.9, 114.9, 116.8, 126.6, 128.1, 128.9, 136.3, 157.2, 157.4, 169.6, 169.8; ESI HRMS exact mass calcd for (C₁₆H₁₉F₃N₄O₃- H)⁻ requires m/z 371.13256, found m/z 371.1312.

Procedure for the synthesis of Boc-11: Compound **Boc-9** (1.0 g), 5% Pd/C (0.1 g) and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until **Boc-9** disappeared completely (monitered by TLC), the solution was filtered. After removal of solvent under reduced pressure, the residue was diluted with DMF (30 mL). The solution was added TEA (835 μ L, 6 mmol) and Br(CH₂)₄Br (360 μ L, 3.0 mmol) at room temperature. After the reaction mixture was stirred at 60 °C for 5 h, then cooled to room temperature. The reaction mixture was added saturated aqueous NaHCO₃ (40 mL) and was extracted four times with EtOAc (40 mL each).The organic layers were combined, washed with brine (40 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 1: 2) to give **Boc-11**.

Procedure for the synthesis of 11: Compound **Boc-11** (1.0 g) reacted with a mixture of TFA: CH_2Cl_2 (1: 2, 20 mL) for an hour and then concentrated under reduced pressure. After chromatography on a H⁺ ion-exchange resin column eluted with NH_3H_2O (3.0 M) and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: MeOH = 10: 1) to give **11.**

11: off-white solid; Yield: 45%; $[\alpha]_D^{25} = +13.0$ (c = 0.10, MeOH); ¹HNMR (600 MHz, CD₃OD) $\overline{\mathbf{\delta}}$ (ppm) 1.61-1.74 (m, 1H), 1.81-1.90 (m, 6H), 2.06-2.18 (m, 1H), 2.65-2.71 (m, 1H), 2.79 (brs, 3H), 2.95-2.99 (m, 1H), 3.03-3.13 (m, 3H), 3.25-2.27 (t, *J* = 7.68 Hz, 1H), 3.71-3.78 (m, 1H), 7.16-7.19 (m, 1H), 7.22-7.34 (m, 4H); ¹³CNMR (150 MHz, CD₃OD) $\overline{\mathbf{\delta}}$ (ppm) 22.8, 25.0, 30.2, 37.3, 46.4, 50.7, 59.0, 68.1, 126.1, 128.0, 129.0, 137.7, 170.6, 172.0R ESI HRMS exact mass calcd for (C₁₈H₂₆N₄O₂ + H)⁺ requires m/z 331.2129, found m/z 331.2117.

Procedure for the synthesis of Boc-12: To a solution of Boc-L-Pro (520 mg, 2.4 mmol) in DMF (20 mL) was added hydrazine dihydrochloride (NH₂NH₂·2HCl, 106 mg, 1mmol), HOBt (350 mg, 2.4mol), DIEA (1.4 mL) and EDCI (460 mg, 2.4 mmol) at 0 °C. The reaction mixture was stirred at 25 °C for 24h, and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), aqueous HCl (1.0 M, 10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 1: 1) to give **Boc-12**.

Procedure for the synthesis of 12: Compound **Boc-12** (1.0 g) reacted with a mixture of TFA: CH_2Cl_2 (1: 2, 20 mL) for an hour and then concentrated under reduced pressure. After chromatography on a H⁺ ion-exchange resin column eluted with NH_3H_2O (3.0 M) and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: MeOH (NH_3) = 10: 1) to give **12.**

12: white solid; Yield: 71%; $[\alpha]_D^{25} = -56.0$. (c = 0.48, MeOH); mp 155.3-158.3 ; ¹HNMR (600 MHz, CD₃OD) δ (ppm) 1.75-1.85 (m, 2H), 1.88-1.93 (m, 1H), 2.13-2.19 (m, 1H), 2.93-297 (m, 1H), 3.04-3.08 (m, 1H), 3.75 (dd, J = 5.94 Hz, 8.64 Hz, 1H); ¹³CNMR (150 MHz, CD₃OD) δ (ppm) 25.3, 30.4, 46.5, 59.3, 172.5. ESI HRMS exact mass calcd for (C₁₀H₁₈N₄O₂ + Na)⁺ requires m/z 249.1322, found m/z 249.1310.

Procedure for the synthesis of Boc-13: To a solution of **12** (652 mg, 2 mmol) in DMF (20 mL) was added benzaldehyde (245 μ L, 2.4 mmol) at room temperature. The reaction mixture was stirred for 0.5h at room temperature, and then NaBH₃CN (265 mg, 4 mmol) was added in portions and the reactions mixture was stirred for another 1 h. The reaction mixture was quenched with H₂O and then concentrated under reduced pressure. After the residue was diluted with EtOAc (30 mL), and the organic phase was washed with aqueous NaOH (1.0 M, 10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: Hexane: ethyl acetate = 1: 1) to give **Boc-13**.

Procedure for the synthesis of 13: Compound **Boc-13** (1.0 g) was treated with a mixture of TFA: $CH_2Cl_2(1: 2, 20 \text{ mL})$ for an hour and then concentrated under reduced pressure. After chromatography on a H⁺ ion-exchange resin column eluted with NH₃·H₂O (3.0 M) and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: MeOH = 10:1) to give **13.**

13: white solid; Yield: 50%; $[α]_D^{25} = -20.8$ (c = 0.048, MeOH); ¹HNMR (600 MHz, CD₃OD) δ (ppm) 1.78-1.86 (m, 1H), 1.87-1.97 (m, 4H), 2.00-2.04 (m, 1H), 2.18-2.27 (m, 1H), 2.34-2.38 (m, 1H), 2.98-3.01 (m, 1H), 3.07-3.11 (m, 2H), 3.19-3.25 (m, 2H), 3.49 (d, J = 12.8 Hz, 1H), 3.95-3.99 (m, 2H), 7.28 (t, J = 7.26 Hz, 7.44 Hz, 1H), 7.29 (t, J = 7.26 Hz, 2H), 7.37 (d, J = 7.08 Hz, 2H), ¹³CNMR (150 MHz, CD₃OD)δ (ppm) 23.2, 24.7, 30.0, 46.3, 53.0, 58.9, 59.3, 66.1, 126.9, 127.9, 128.9, 138.2, 170.2, 173.5. ESI HRMS exact mass calcd for ($C_{17}H_{24}N_4O_2 + H$)⁺ requires m/z 317.1972, found m/z 317.1982. **Procedure for the synthesis of Z-14:** To a solution of Z-L-Pro (600 mg, 2.4 mmol) in DCM (20 mL) was added L-Boc-Pro-NHNH₂ (460 mg, 2 mmol), HOBt (350 mg, 2.4 mmol), DIEA (700 μL) and EDCI (460 mg, 2.4 mmol) at 0 °C. The reaction mixture was stirred at 25 °C for 12 h, and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (10 mL), aqueous HCl (1.0 M, 10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 1: 1) to give **Z-14.**

Procedure for the synthesis of 14: Compound **Z-14** (1.0 g), 5% Pd/C (0.1 g) and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until **Z-14** disappeared completely (monitored by TLC), the solution was filtered. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: MeOH = 10: 1) to give **14**.

14: white solid; Yield: 66%; $[α]_D^{25} = -73.0$. (c = 0.104, MeOH); mp 153.7-156.0 ; ¹HNMR (600 MHz, CD₃OD) δ (ppm)1.47 (d, *J* = 11.34 Hz, 9H), 1.82-1.88 (m, 2H), 1.89-1.97 (m, 2H), 2.00-2.10 (m, 2H), 2.19-2.30 (m, 1H), 2.97-3.00 (m, 1H), 3.41-3.45 (m, 1H), 3.52-3.54 (brs, 1H), 3.80 (dd, *J* = 6.06 Hz, 8.46 Hz, 1H), 4.24-4.26 (m, 1H); ¹³CNMR (150 MHz, CD₃OD) δ (ppm) 23.2, 23.9, 25.2, 27.2, 30.0, 30.4, 31.1, 46.4, 46.8, 48.2, 59.1, 80.1, 154.7, 172.4, 172.7. ESI HRMS exact mass calcd for (C₁₅H₂₆N₄O₄ - H)⁻ requires m/z 325.1870, found m/z 325.1887.

Procedure for the synthesis of Boc-15: To a solution of **Boc-12** (831 mg, 2 mmol) in THF (20 mL) was added benzyl bromide (260 μ L, 2.2 mmol) and sodium hydride (250 mg, 4 mmol) at 0°C. The reaction mixture was stirred at 25 °C for 24 h, and then quenched with H₂O. The mixture was added EtOAc (30 mL), and the organic phase was washed with brine (10 mL), and dried over anhydrous Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate = 3: 1) to give **Boc-15**.

Procedure for the synthesis of 15: Compound **Boc-15** (1.0 g) was treated with a mixture of TFA: $CH_2Cl_2(1:2, 20 \text{ mL})$ for an hour and then concentrated under reduced pressure. After chromatography on a H⁺ ion-exchange resin column eluted with NH₃·H₂O (3.0 M) and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM: MeOH = 10: 1) to give **15.**

15: white solid; Yield: 62%; $[α]_D^{25} = -56.0$ (c = 0.116, MeOH); mp 101.3-103.7 ; ¹HNMR (600 MHz, CD₃OD) δ (ppm) 1.59-1.64 (m, 1H), 1.67-1.82 (m, 5H), 1.99-2.07 (m, 2H), 2.76-2.80 (m, 1H), 2.81-2.85 (m, 1H), 2.94-2.98 (m, 1H), 3.11-3.15 (m, 1H), 3.55 (dd, *J*= 6.18 Hz, 8.46 Hz, 1H), 3.78 (dd, J = 6.36 Hz, 8.82 Hz, 1H), 4.65-4.93 (brs, 2H), 7.27-7.36 (m, 5H); ¹³CNMR (150 MHz, CD₃OD) δ (ppm) 25.5, 25.6, 30.1, 30.5, 46.6, 50.5, 57.5, 58.9, 127.6, 128.3, 128.7, 135.5, 174.2, 175.7. ESI HRMS exact mass calcd for $(C_{17}H_{24}N_4O_2 + Na)^+$ requires m/z 339.1791, found m/z 339.1779.

General procedure for aldol reaction in toluene using catalyst 15: To a solution of 15 (0.04 mmol, 20 mol%) in a mixture of acetone (0.4 mL) and toluene (1.6 mL) was added TFA (0.04 mmol). The reaction mixture was stirred at 0 °C for 10 minutes, and then aldehyde (0.2 mmol) was added. The reaction mixture was stirred at 0 °C for another 4-72 h and then was quenched with saturated ammonium chloride solution (1 mL) and the layers were separated. The aqueous layer was extracted three times (15 mL each) with ethyl acetate. The combined organic layers was washed with brine (5 mL) and dried over anhydrous MgSO₄. After removal of solvent, the residue was purified through flash column chromatography on silica gel (eluent: Hexane: AcOEt = 3:1) to give the pure aldol adducts.

S11

S12

S16

S17

HPLC spectra of 16a-g

Enantiomeric excess: 96%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane = 30/70), UV 254 nm, flow rate 1.0 mL/min. R-isomer, t_R 13.4 min and S-isomer, t_R 18.6.

All components were found

Enantiomeric excess: 96%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane = 30/70), UV 254 nm, flow rate 1.0 mL/min. *R*-isomer, t_R 12.1 min and *S*-isomer, t_R 9.2.

Enantiomeric excess: 96%, determined by HPLC (Daicel Chiralpak OJ-H, i-PrOH/Hexane = 20/80), UV 254 nm, flow rate 1.0 mL/min. *R*-isomer, t_R 17.6, min and *S*-isomer, t_R . 20.3.

Enantiomeric excess: 92%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane = 30/70), UV 254 nm, flow rate 1.0 mL/min. *R*-isomer, t_R 12.3, min and *S*-isomer, t_R . 23.4.

Enantiomeric excess: 96%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane = 8/92), UV 262 nm, flow rate 1.0 mL/min. *R*-isomer, t_R 16.2, min and *S*-isomer, t_R . 12.8.

Enantiomeric excess: 87%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane = 15/85), UV 257 nm, flow rate 1.0 mL/min. *R*-isomer, t_R 10.2, min and *S*-isomer, t_R . 12.9.

Enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane = 15/85), UV 257 nm, flow rate 1.0 mL/min. *R*-isomer, t_R 10.9, min and *S*-isomer, t_R . 12.8.

X-ray analysis. Single crystal diffraction data were measured by an Enraf-Nonius CCD single-crystal x-ray diffractometer at 286K. Intensity data were collected with a Siemens P4 four –circle diffractometer with a graphite-monochromated MoK_{α}(λ = 0.71073 Å)radiation. The structure was solved by direct methods using SHELX-97 and refined by full-matrix least-squares with SHELX-97.

Crystal data for 12: $C_{10}H_{18}N_4O_2$ (286K). M = 226.28, orthorhombic, space group P2₁2₁2₁, *a* = 9.705 (1) Å, *b* = 7.660 (1) Å, *c* = 7.818 (1) Å, *a* = β = γ = 90°, *V* = 581.23 (17) Å³, *Z* = 2, ρ_{calc} = 1.293 mg/m³, absorption coefficient = 0.093 mm⁻¹, F (000) = 244, total reflections collected 939, unique 823 (R_{int} = 0.0095), final R indices [I>2 σ (1)] were R₁ = 0.0351, wR₂ = 0.0751.

Calculations:

Figure S1. The optimized transition structures for the aldol reaction of benzaldehyde with acetone catalyzed by 12.

The resulting Cartesian coordinates for the four transition structures **TS1**, **TS2**, **TS3** and **TS4**, as well as the enamine intermediate **E1** and **E2** formed by the condensation of acetone with, respectively, catalyst **15** and **12**:

Structure of TS1:

С	0.52787100	0.20104600	3.35720400
Ν	-0.02648300	-0.92083100	2.57070600
С	-1.47989200	-1.02351400	2.75073600
С	-1.71178600	-0.30554700	4.08350300
С	-0.69134800	0.83170200	4.03471900
С	-2.32195400	-0.38435500	1.63380400
0	-3.50846400	-0.31850100	1.75417900
Ν	-1.64431400	0.05687200	0.54559200
С	0.74185700	-1.79141100	1.93547000
С	2.09542000	-1.53877300	1.68216500

С	1.94437000	-0.51210600	-0.04635900
0	1.08337900	0.41153600	0.11442900
С	0.11003000	-3.02969000	1.35782900
С	3.38832100	-0.15339100	-0.23364300
С	4.23613200	-1.01975900	-0.91067800
С	5.56389800	-0.68345500	-1.12014600
С	6.05360600	0.52395200	-0.65072600
С	5.21154000	1.39537900	0.02600700
С	3.88594900	1.05891600	0.23036200
Ν	-2.31740700	0.45112700	-0.58801500
С	-2.14129900	1.69595800	-1.07927300
0	-2.49284400	2.02239900	-2.17895400
С	-1.45780700	2.74257400	-0.18386800
С	-1.90468600	4.16427600	-0.54115600
Ν	0.00970400	2.79274700	-0.50763900
С	-3.04126300	-0.57029400	-1.35439900
С	-1.00423400	4.60569900	-1.71761500
С	0.13826800	3.57725800	-1.78257400
С	-2.15435100	-1.66968300	-1.89888100
С	-1.06116200	-1.37804700	-2.71050500
С	-2.45605300	-2.99808500	-1.63505000
С	-0.28237200	-2.39423900	-3.23441400
С	-1.68011100	-4.02110300	-2.16549900
С	-0.58965900	-3.72108300	-2.96134600
Н	0.00872500	-4.51041100	-3.37901800
Н	-0.62016000	5.60441600	-1.55732500
Н	-0.65060300	-0.06658900	0.44232200
Н	1.65171500	-1.36855100	-0.64440500
Н	2.69101300	-2.39430200	1.41929100
Н	-1.79407600	-2.05531100	2.79933200
Н	-1.48192900	-0.98563700	4.89587800
Н	-2.73465500	0.02239300	4.18966700
Н	1.05722000	0.88280900	2.71136000
Н	1.22372700	-0.19722300	4.08573500
Н	-1.07663100	1.65472900	3.44045900
Н	-0.44829900	1.22464100	5.01293400
Н	2.60844800	-0.81852500	2.28995800
Н	0.83772300	-3.59052300	0.79141600
Н	-0.72082800	-2.79612900	0.70514800
Н	-0.25514400	-3.66337200	2.15988400
Н	3.85990900	-1.95771400	-1.28209700
Н	6.21110900	-1.35892900	-1.64912800
Н	7.08341800	0.78631400	-0.81092900
Н	5.59148600	2.33239700	0.39162200

Н	3.23237300	1.73119200	0.75540500
Н	-1.56754500	2.50234000	0.85927500
Н	-1.75091000	4.80412900	0.32101600
Н	-2.95349100	4.19419500	-0.79253900
Н	0.46808900	3.29695600	0.23469900
Н	0.47542300	1.87123600	-0.51141300
Н	-3.53939200	-0.04813700	-2.15498300
Н	-3.79716000	-0.98131500	-0.70199900
Н	0.01397300	2.88347400	-2.59722100
Н	1.12976300	4.00203500	-1.82446700
Н	-1.55077000	4.60041400	-2.64771900
Н	-0.83351500	-0.35476900	-2.95184100
Н	-3.30894300	-3.24118000	-1.02498200
Н	0.55140000	-2.15583300	-3.87034400
Н	-1.93422400	-5.04546200	-1.96073700
Structure of TS2:			
С	-2.39250500	3.12619900	0.38611800
Ν	-2.11368100	2.25082200	-0.77183800
С	-0.93624000	2.72316300	-1.51284300
С	-0.86298100	4.20344100	-1.12775700
С	-1.29008200	4.18727900	0.33990000
С	0.38038400	2.00964900	-1.16434600
0	1.40421600	2.41808300	-1.62371500
Ν	0.28033300	0.92579600	-0.35971800
С	-2.93555200	1.28798100	-1.14752600
С	-3.97338000	0.83971100	-0.31586500
С	-3.03206300	-0.50651400	0.84914900
0	-1.86680900	-0.07286900	1.13389400
С	-2.68027500	0.57770000	-2.45000700
Ν	1.37087400	0.11262900	-0.12719900
С	1.60624800	-0.25529700	1.15862900
0	2.12192100	-1.29446000	1.45031100
С	1.24095100	0.73389600	2.27288900
С	2.31029500	0.75059300	3.37261900
Ν	0.03790800	0.22664600	3.01728200
С	1.79943800	-0.79826700	-1.20802600
С	1.95994700	-0.42042100	4.31789900
С	0.52385900	-0.84096600	3.95903400
С	-3.18304100	-1.80180500	0.10317600
С	-2.07579400	-2.44291000	-0.43392200
С	-4.43145500	-2.41017000	0.00174900
С	-2.21451700	-3.66016300	-1.08330700
С	-4.57258100	-3.62368200	-0.64458700

С	-3.46193900	-4.25010200	-1.19365500
С	3.30330600	-0.89880200	-1.34867700
С	4.05333200	0.21642200	-1.70881600
С	3.94281900	-2.11523400	-1.16470500
С	5.42232300	0.10930100	-1.87932600
С	5.31356500	-2.22444800	-1.34226800
С	6.05524100	-1.11198300	-1.69881700
Н	7.11830900	-1.19392200	-1.83688900
Н	-3.56964900	-5.19513700	-1.69395700
Н	2.03031000	-0.11466400	5.35333500
Н	-0.61042800	0.56985000	-0.05728200
Н	-4.74803300	0.28084800	-0.80675000
Н	-1.07057000	2.59642200	-2.57654000
Н	-1.57645800	4.76042300	-1.72446800
Н	0.12104400	4.61287100	-1.29721800
Н	-2.39327900	2.54609200	1.29573700
Н	-3.37154300	3.57082500	0.25729600
Н	-0.45363200	3.90039600	0.96964000
Н	-1.64434800	5.14801200	0.68882700
Н	-4.33615900	1.51695200	0.43514400
Н	-3.34278300	-0.26708600	-2.55050300
Н	-1.66001400	0.22248400	-2.52459500
Н	-2.86252600	1.25763200	-3.27646600
Н	1.01238000	1.70845800	1.87782200
Н	2.25478200	1.69799300	3.89767400
Н	3.30307100	0.66315000	2.95708000
Н	-0.33482500	0.99317200	3.55446200
Н	-0.73412800	-0.06532500	2.39417700
Н	1.37171500	-0.39194800	-2.11220500
Н	1.37290400	-1.77948800	-1.04018200
Н	0.49580700	-1.77384200	3.42244300
Н	-0.15461200	-0.88795100	4.79753200
Н	2.62834500	-1.25350900	4.16651200
Н	-3.80287600	-0.38111000	1.60241700
Н	-1.10455300	-2.00033800	-0.32496800
Н	-5.29628600	-1.93518000	0.43307800
Н	-1.34993800	-4.15025500	-1.49331800
Н	-5.54096000	-4.08438700	-0.71536200
Н	3.56461700	1.16205400	-1.85495800
Н	3.37403300	-2.97984900	-0.87238300
Н	5.99431400	0.97525200	-2.16047900
Н	5.79746200	-3.17359000	-1.19854400

Structure of TS3:

С	0.08351600	-2.31718600	1.78665100
Ν	-0.15565700	-2.57629600	0.35043700
С	-1.55571500	-2.93687100	0.09606000
С	-2.06339300	-3.36275800	1.47935900
С	-1.29999300	-2.43803900	2.42754100
С	-2.41113600	-1.80347000	-0.48286900
0	-3.53245800	-2.01448000	-0.82984000
Ν	-1.81313600	-0.58349700	-0.57632100
С	0.81698100	-2.59741400	-0.54542500
С	2.09421300	-2.09210000	-0.27194900
С	1.82762700	-0.15088100	-0.73436300
0	0.78021600	0.26596400	-0.14218200
С	0.49945600	-3.06056000	-1.94375900
С	3.16774700	0.37834300	-0.31986200
С	4.23000200	0.36225600	-1.21407100
С	5.46222300	0.88032000	-0.85006500
С	5.63984200	1.41725700	0.41436400
С	4.58165800	1.43834900	1.31214000
С	3.35133000	0.92407100	0.94543900
Ν	-2.43309700	0.39422800	-1.31718700
С	-2.81503300	1.59200600	-0.81934900
0	-3.46173800	2.36431700	-1.45897600
С	-2.29795200	1.97358400	0.57682100
С	-2.91965600	3.27670300	1.07834500
Ν	-0.84334400	2.34637100	0.48699000
С	-2.09019100	4.40305900	0.42114000
С	-0.80888000	3.72800500	-0.10370100
Н	-2.86458700	0.11598900	-2.17465800
Н	-1.85591200	5.18195500	1.13407600
Н	-0.81284800	-0.48497700	-0.50759100
Н	1.76697600	-0.31646100	-1.80645400
Н	2.87388600	-2.40371100	-0.94348900
Н	-1.62946000	-3.74760100	-0.61254100
Н	-1.78509400	-4.39595200	1.65226200
Н	-3.13831800	-3.28493100	1.55426900
Н	0.52742000	-1.34434200	1.91912800
Н	0.76585500	-3.06877400	2.16581600
Н	-1.78147900	-1.46676600	2.47492500
Н	-1.24281700	-2.82404300	3.43650000
Н	2.40623300	-2.01191700	0.75165700
Н	1.35542800	-2.92333000	-2.58685600
Н	-0.34045800	-2.52434800	-2.36984100
Н	0.25009900	-4.11654500	-1.93561900
Н	4.09683600	-0.04909400	-2.20023500

Н	6.27735500	0.86756200	-1.55025100
Н	6.59524700	1.81852900	0.69929200
Н	4.71936800	1.85530900	2.29352100
Н	2.52912100	0.94004400	1.63685900
Н	-2.39570800	1.14330400	1.25827400
Н	-2.83379400	3.31410400	2.15891900
Н	-3.96579300	3.33415200	0.82271100
Н	-0.47637600	2.37923900	1.42522300
Н	-0.23559400	1.66200000	0.01298100
Н	-0.81526000	3.61382200	-1.17638100
Н	0.11187700	4.20641400	0.19299500
Н	-2.62960500	4.85028000	-0.39963000

Structure of TS4:

С	0.01032700	2.82283700	-1.70769100
Ν	0.65009800	2.52119700	-0.40840800
С	-0.15517300	3.02471700	0.71111900
С	-1.03826700	4.09093000	0.05158000
С	-1.30804100	3.50388600	-1.33411600
С	-1.01055600	1.95855500	1.40502900
0	-1.62931900	2.22834400	2.38832700
Ν	-1.01130700	0.72205700	0.83389600
С	1.85315000	1.98499600	-0.30932300
С	2.49482100	1.40179100	-1.41321200
С	1.74023800	-0.45712700	-1.42371700
0	0.48557500	-0.39682800	-1.20369700
С	2.49950500	1.89710600	1.04745300
Ν	-1.55068100	-0.32375300	1.54666000
С	-2.58326400	-1.07961600	1.10211100
0	-3.12668900	-1.87685200	1.80309700
С	-2.97053800	-0.94593500	-0.37954200
С	-4.21868000	-1.76079900	-0.71707900
Ν	-1.93224600	-1.61441800	-1.23817300
С	-3.71332900	-3.20467800	-0.93493500
С	-2.18777800	-3.09056400	-1.11794100
С	2.62884900	-1.22928200	-0.48878500
С	2.15232300	-1.69207100	0.73061600
С	3.93066500	-1.54481900	-0.86784200
С	2.96812300	-2.43907700	1.56660100
С	4.74607900	-2.28995900	-0.03626400
С	4.26616700	-2.73630500	1.18713000
Н	-1.40485400	-0.32186500	2.53579400
Н	4.89773900	-3.31779100	1.83361200
Н	-4.17728700	-3.65426900	-1.80230800

Н	-0.28625600	0.45438700	0.18833000
Н	3.55530500	1.26441200	-1.31001700
Н	0.46734800	3.45172600	1.48206500
Н	-0.47368400	5.01262200	-0.02980300
Н	-1.92912500	4.28899500	0.62967700
Н	-0.12530000	1.91423400	-2.27178900
Н	0.65687800	3.48970700	-2.26522400
Н	-2.11102700	2.77603500	-1.28468700
Н	-1.59148200	4.25358900	-2.06063000
Н	2.19184700	1.72645400	-2.39155700
Н	3.41283200	1.32702600	0.99039000
Н	1.85106700	1.42812400	1.77759200
Н	2.73791500	2.89519800	1.40145600
Н	-3.02845200	0.09338800	-0.66215800
Н	-4.66133400	-1.36535400	-1.62492100
Н	-4.95302500	-1.69643300	0.07005200
Н	-2.09329800	-1.32736500	-2.19100500
Н	-0.95508600	-1.33370900	-1.06453000
Н	-1.64220600	-3.43676500	-0.25394200
Н	-1.79817300	-3.58036100	-1.99713700
Н	-3.93340900	-3.82298800	-0.07820500
Н	2.05203500	-0.56528400	-2.45740200
Н	1.14076700	-1.48145700	1.02240300
Н	4.30737400	-1.21051300	-1.81958600
Н	2.58900000	-2.79368100	2.50812100
Н	5.74858000	-2.52847800	-0.34137400
Structure of E1.			
<u>Siluciule of EL.</u>	0.06847000	3 21/08000	1 45702800
C N	1 46081400	2 26464100	-1.45702800
IN C	0.62475400	2.30404100	-0.37047800
C C	-0.35974500	2.40813100	0.00414000
C C	-0.35974500	3 55634800	-1 0/378000
C C	-0.1/388300	1 18730900	1 12959200
0	-0.74471000	1.05368300	2 15310300
N	-0 17751300	0 22643200	0.13647500
C	2 85801200	2 14300100	-0 28978100
C	3 68532200	2 38400100	-1 29870800
C	3 37457800	1 58072300	1.01233600
N	-0 63494400	-1 03431500	0.45321300
C	-1 85611800	-1 41379000	0.06912600
0	-2.30867200	-2.51883300	0.24812600
Č	-2.75005300	-0.38530700	-0.63919700
C C	-3 48161200	0.56838600	0 33593600
~	2.10101200	0.20020000	0.000000

Ν	-3.86182500	-1.19632000	-1.26983300
С	0.23313500	-1.92512100	1.23664800
С	-4.84849500	-0.08375200	0.56127400
С	-5.18892800	-0.65534400	-0.80572900
С	1.46889800	-2.36099600	0.47722300
С	2.71485200	-2.29103700	1.08240900
С	1.37338300	-2.88708800	-0.80783000
С	3.84988700	-2.73165400	0.41649800
С	2.50404600	-3.31938700	-1.47662200
С	3.74732300	-3.24128900	-0.86504200
Н	4.62519500	-3.58088800	-1.38349900
Н	-5.91375600	-1.45497300	-0.81017500
Н	0.56805500	0.24811900	-0.52904000
Н	4.73083900	2.16742700	-1.19728100
Н	1.17577100	2.69730800	1.70379000
Н	0.08670900	4.54660600	0.78809000
Н	-1.30264600	3.50583900	1.00001600
Н	1.01870500	2.69835100	-2.40873700
Н	1.57178200	4.11425700	-1.53907400
Н	-1.14570500	2.77414700	-1.35845700
Н	-0.80086700	4.48688500	-1.47905900
Н	3.37077800	2.78786700	-2.24097900
Н	4.40141600	1.26608500	0.89418300
Н	2.80065300	0.71954800	1.33719500
Н	3.34476500	2.31877500	1.80757600
Н	-2.21654300	0.13643000	-1.41520700
Н	-3.59867600	1.53680600	-0.13587500
Н	-2.92397800	0.70525400	1.24955200
Н	-3.79113200	-1.22898000	-2.27388400
Н	-3.72958300	-2.14495900	-0.92124400
Н	0.50035500	-1.39910200	2.14234700
Н	-0.37079000	-2.77503400	1.51142400
Н	-4.78353100	-0.87787600	1.29605300
Н	-5.59561800	0.62324100	0.89458600
Н	-5.49110900	0.11235600	-1.50359600
Н	2.80473900	-1.90151300	2.08155100
Н	0.41117100	-2.97769200	-1.28157100
Н	4.80806800	-2.67454900	0.89993800
Н	2.41745800	-3.72621800	-2.46788600
Structure of E2:			
С	-3.98337900	-0.51795100	-0.64124600
Ν	-2.87961700	0.23720900	-0.04833800
С	-2.08129000	-0.61370700	0.82507600

С	-2.80260600	-1.97866300	0.81397800
С	-3.54654900	-1.97266100	-0.52023300
С	-0.64426600	-0.78069900	0.35006400
0	0.21860700	-1.24938000	1.03926300
Ν	-0.39258900	-0.42697800	-0.94831400
С	-3.06779700	1.60537200	0.22606300
С	-4.11211900	2.29234900	-0.21933400
С	-1.97631000	2.28828000	1.01631700
Ν	0.90220500	-0.49193200	-1.38553600
С	1.82219500	0.33350500	-0.84670900
0	1.58605000	1.38051600	-0.31703200
С	3.27195800	-0.14619800	-0.95696400
С	3.60358900	-1.26104900	0.06253000
Ν	4.12531600	1.02381300	-0.53492100
С	4.13128600	-0.50163800	1.28190400
С	4.95457000	0.61844900	0.66357100
Н	1.18934400	-1.40344500	-1.67017400
Н	5.10646900	1.48472600	1.28867000
Н	-1.02241700	0.16087400	-1.44650200
Н	-4.18275700	3.34506900	-0.02555200
Н	-2.00589300	-0.23910600	1.83572200
Н	-3.51080100	-1.99993900	1.63411600
Н	-2.12143900	-2.80910700	0.94508900
Н	-4.14853200	-0.20798800	-1.66577700
Н	-4.90470600	-0.34587100	-0.08971600
Н	-2.88116100	-2.24161300	-1.33473700
Н	-4.38492600	-2.65717500	-0.53765000
Н	-4.91217400	1.85665400	-0.78454000
Н	-2.14304200	3.35622300	1.02259300
Н	-0.99440900	2.10554600	0.59165800
Н	-1.95676200	1.95596900	2.04938000
Н	3.51635500	-0.41330300	-1.97517800
Н	4.36751100	-1.91071100	-0.34753700
Н	2.73202800	-1.85396400	0.29862100
Н	4.69385600	1.37694900	-1.28778200
Н	3.47161800	1.76047500	-0.27583200
Н	3.31141400	-0.09957600	1.86507800
Н	4.73400500	-1.12352500	1.92913000
Н	5.90627000	0.26662400	0.29274100

The resulting energies (in atomic unit) of the enamine intermediates and the transition states by various methods, as well as the thermal corrections obtained by the harmonic vibrational frequency analysis: HF/6-31G* B3LYP/6-31G* B3LYP/6-31G* B3LYP/6-311+G** ZPE H Gibbs

-

S

	optimized	sp gas phase	iefpcm (toluene)	iefpcm (toluene)	corr.	corr.	Corr.	cal/mol·K
E1	-1141.55920	-1148.80456	-1148.83395	-1149.14953	0.51739	0.54155	0.46059	170.39
TS1	-1484.97009	-1494.38182	-1494.39981	-1494.80578	0.63843	0.66861	0.57527	196.46
TS2	-1484.96375	-1494.37592	-1494.39506	-1494.80070	0.63841	0.66854	0.57553	195.76
E2	-872.97962	-878.43855	-878.47927	-878.73199	0.40005	0.41875	0.35201	140.48
TS3	-1216.38764	-1224.01414	-1224.04175	-1224.38634	0.52055	0.54543	0.46474	169.83
TS4	-1216.38696	-1224.01313	-1224.04133	-1224.38540	0.52092	0.54558	0.46584	167.84

Note: the single point energies in solvent contain the non-electrostatic contributions.

The resulting activation energies (in kcal/mol) with the thermal corrections:

	HF/6-31G*	B3LYP/6-31G*	B3LYP/6-31G*	B3LYP/6-311+G**	ZPE	Н	Gibbs	S	Н	G
_	opt.	sp gas phase	iefpcm (toluene)	iefpcm (toluene)	corr.	corr.	corr.	cal/mol·K	298K	298K
TS1	14.2	-3.9	3.6	8.0	1.7	1.2	16.8	-52.2	9.2	24.8
TS2	18.2	-0.2	6.6	11.2	1.7	1.2	16.9	-52.9	12.4	28.1
TS3	16.0	-2.9	5.7	9.2	1.4	1.0	15.5	-48.9	10.2	24.8
TS4	16.4	-2.3	6.0	9.8	1.6	1.1	16.2	-50.9	10.9	26.0

Full reference 8 from paper b511992h:

All calculations were performed with the Gaussian03 program. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Sealmani, N. Rega, G. A. Petersson, H. Nakatsuij, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Iahida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. F. Startmann, O. Yazyev, J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorv, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanavakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision C.02), Gaussian, Inc., Wallingford, CT, 2004.