Supplementary data

Protonated N'-benzyl-N'-prolyl Proline Hydrazide as Highly Enantioselective Catalyst for Direct Asymmetric Aldol Reaction

Chuanling Cheng, ${ }^{a, d, e}$ Jian Sun, ${ }^{* a}$ Chao Wang, ${ }^{a, e}$ Yu Zhang, ${ }^{a, e}$ Siyu Wei, ${ }^{a}$ Fan Jiang ${ }^{b}$ and Yundong Wu ${ }^{* b, c}$${ }^{a}$ Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Fax: +86-28-85222753; Tel:+86-28-85211220; E-mail: sunjian@cib.ac.cn${ }^{b}$ College of Chemistry, Peking University, Beijing, 100871, China;${ }^{c}$ Department of chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China;${ }^{d}$ Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041;${ }^{e}$ Graduate School of Chinese Academy of Sciences, Beijing, China
sunjian@cib.ac.cn
Table of Contents Page
Generalities: S2
Experimental details, characterization of new compounds: S2
Selected NMR Spectra of 1-15: S9
HPLC spectra of 16a-g: S18
X-ray crystallographic data of 12: S32
Cartesian coordinates of the structures of enamine intermediates and transition states related to 15 and 12: S33

Generalities: NMR spectra were recorded on a Brucker- 600 MHz spectrometer. Optical rotations were measured on a Perkin-Elmer 341 Polarimeter at $\lambda=589 \mathrm{~nm}$. ESIMS spectra were recorded on BioTOF Q. HPLC analyses were performed on PerkinElmer (Series 200 UV/VIS Detector and Series 200 Pump). Chiralpak AS-H and OJ-H columns were purchased from Daicel Chemical Industries, LTD. Acetone was dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and then was distilled by adding $\mathrm{P}_{2} \mathrm{O}_{5}$. Hexane and ethyl acetate for column chromatography were distilled before use. Reactions were monitored by thin layer chromatography using silica gel HSGF254 plates. Chemical shifts were reported in ppm using the solvent residue signals as reference.
Materials: All starting materials were of the highest commercially available grade and used without further purification.
Procedure for the synthesis of Boc-1: To a solution of Boc-L-Pro ($430 \mathrm{mg}, 2.0 \mathrm{mmol}$) in DCM (20 mL) was added 4-nitrophenylhydrazine ($370 \mathrm{mg}, 2.4 \mathrm{mmol}$), HOBt ($350 \mathrm{mg}, 2.4 \mathrm{mmol}$), N, N-Diisopropylethylamine (DIEA, $700 \mu \mathrm{~L}$) and EDCI ($460 \mathrm{mg}, 2.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous NaHCO_{3} $(10 \mathrm{~mL})$, aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=1: 1$) to give Boc-1.
Procedure for the synthesis of 1: After compound Boc-1 (1.0 g) with a mixture of TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 2$, 20 mL) was stirred for half an hour, the solution was evaporated to dryness and then passed through a H^{+} ion-exchange resin column eluted with $\mathrm{NH}_{3} \mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{M})$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}=$ 20: 1) to give 1.
1: Yellow solid; Yield: 60%; $[\alpha]_{\mathrm{D}}{ }^{25}=-79.9(\mathrm{c}=0.244, \mathrm{MeOH}) ; \mathrm{mp} 153.0-154.0 \quad ;{ }^{1} \mathrm{HNMR}(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 1.80-1.91(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.97(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.76$ (dd, $J=2.82 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=9.12 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=9.18 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(150 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 25.6,30.1,46.6,59.2,110.6,125.4,139.5,154.3,175.0$. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 251.1139$, found $\mathrm{m} / \mathrm{z} 251.1122$.

Procedure for the synthesis of $\mathbf{2}$ is similar to that for 1.

2: yellow solid; Yield: $78 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-39.5(\mathrm{c}=0.238$, MeOH$) ; \mathrm{mp} 198-200$; The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed a double set of peaks due to different conformers. ${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$ $1.99-2.18(\mathrm{~m}, 3 \mathrm{H}), 1.94($ brs, 1 H$), 2.43(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.38(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.63(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 23.6,23.7,28.9,29.6,45.9,46.0,58.5,58.8,112.6,112.8,120.1$, 120.7, 128.7, 129.0, 147.5, 148.1, 168.6, 173.0. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{1}+\text { H }\right)^{+}$ requires m / z 206.1288, found m / z 206.1279.
Procedure for the synthesis of Boc-L-Pro-NHNH $\mathbf{2}^{\text {: }}$ Compound Boc-4 (see procedure for the synthesis of Boc-4) (1.0 g), $5 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$ and methanol $(30 \mathrm{~mL})$ were charged in a two-neck flask $(100 \mathrm{~mL})$. After stirred under hydrogen (1 atm) until Boc-4 disappeared completely (monitored by TLC), the solution was filtered. Removal of solvent gave Boc-L-Pro-NHNH ${ }_{2}$.
Procedure for the synthesis of Boc-3: To a mixture of solution of Boc-L-Pro- $\mathrm{NHNH}_{2}(460 \mathrm{mg}, 2.0$ mmol) and TEA $(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ in DCM $(20 \mathrm{~mL})$ was added benzyl bromide $(1.2 \mathrm{~mL}, 10 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred at room temperature for 12 h and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (30 mL), and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$, and dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=1: 1$) to give Boc-3.
Procedure for the synthesis of 3: Compounds Boc-3 (1.0 g) was treated with a mixture of TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 2,20 \mathrm{~mL})$ for half an hour and then concentrated under reduced pressure. After saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added to the residue, the solution was extracted three times with EtOAc (30 mL each). The organic layers were combined, washed with brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}=20: 1$) to give 3
3: white solid; Yield: $66 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-19.8(\mathrm{c}=0.242, \mathrm{MeOH}) ; \mathrm{mp} 204-206 ;{ }^{1} \mathrm{HNMR}(600 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra show a double set of peaks due to different conformers. $\delta(\mathrm{ppm})$ 1.12-1.23 (m, 1H), 1.58(m, 2H), $1.90(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H})$, $7.24(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 23.2,23.4,28.6,29.7,45.8,46.2,57.7,58.4$, $60.8,61.6,62.3,127.3,127.9,128.3,129.1,129.8,136.0,136.2,136.8,166.8,171.2$. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{1}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 310.1914$, found $\mathrm{m} / \mathrm{z} 310.1924$.

Procedure for the synthesis of Boc-4: To a solution of Boc-L-Pro ($430 \mathrm{mg}, 2.0 \mathrm{mmo}$) in DCM (20 mL) was added benzyloxycarbonylhydrazine ($400 \mathrm{mg}, 2.4 \mathrm{mmol}$), HOBt ($350 \mathrm{mg}, 2.4 \mathrm{mmol}$), N,Ndiisopropylethylamine (DIEA, $700 \mu \mathrm{~L}$) and EDCI ($460 \mathrm{mg}, 2.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10$ mL), aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=1: 1$) to give Boc-4.
Procedure for the synthesis of 4: Compound Boc-4 (1.0 g) was treated with a mixture of TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1: 2,20 \mathrm{~mL})$ for half an hour and then concentrated under reduced pressure. After saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added to the residue, the solution was extracted three times with EtOAc (30 mL each). The organic layers were combined, washed with brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}=20: 1$) to give 4.
4: Off-white solid; Yield: $63 \% ;[\alpha]_{D}{ }^{25}=-33.3(c=0.766, ~ E t O A c) ;{ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 1.66-1.75 (brs, 1H), $1.94($ brs, 1 H$), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.16(\mathrm{~m}, 2 \mathrm{H})$, $7.31-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta(\mathrm{ppm}) 26.0,30.5,38.1,47.2,59.8,67.6,128.2,128.3$, 128.5, 135.7, 156.1, 174.6. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{Na}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 286.1162$, found $\mathrm{m} / \mathrm{z} 286.1148$.

Procedure for the synthesis of $\mathbf{5}$ is similar to that for 4.

5: Off-white solid; Yield: $70 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-46.8(\mathrm{c}=0.434, \mathrm{MeOH}) ;{ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 1.76-1.84 (m, 2H), 1.86-1.92 (m, 1H), 1.99 (s, 1H), 2.12-2.17 (m, 1H), 2.90-2.94 (m, 1H), 3.03-3.07 (m, 1 H), 3.73 (dd, $J=6.06 \mathrm{~Hz}, 8.40 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 19.1,25.4,30.5,46.5$, 59.2, 170.3, 174.0. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{Na}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 194.0900$, found m/z 194.0910.

Procedure for the synthesis of 6: To a mixture of solution of Boc-L-Pro-NHNH $2(460 \mathrm{mg}, 2.0 \mathrm{mmol})$ and TEA $(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ in DCM $(20 \mathrm{~mL})$ was slowly added TFAA $(600 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h , quenched with MeOH and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (30 mL), and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$,
and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=1: 1$) to give Boc-6.

Compound Boc-6 (1.0 g) reacted with a mixture of TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 2,20 \mathrm{~mL})$ for half an hour and then concentrated under reduced pressure. The residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH})=10: 1$ to give 6 .
6: white solid; Yield: 66%; $[\alpha]_{\mathrm{D}}{ }^{25}=-8.6(\mathrm{c}=0.51, \mathrm{MeOH}) ; \mathrm{mp} 208-210 ;{ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta(\mathrm{ppm}) 2.08-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.46-2.52(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.45(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=6.6$ $\mathrm{Hz}, 8.28 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.96(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 23.5$, 29.4, 46.0, 58.6, 114.9, 116.8, 156.4, 156.7, 167.6. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{H}\right)^{+}$ requires $\mathrm{m} / \mathrm{z} 226.0798$, found $\mathrm{m} / \mathrm{z} 226.0789$.
Procedure for the synthesis of Z-L-Pro-NHNH $\mathbf{2}_{\mathbf{2}}$: To a solution of Z-L-Pro ($500 \mathrm{mg}, 2 \mathrm{mmol}$) in DMF $(20 \mathrm{~mL})$ was added $\mathrm{NH}_{2} \mathrm{NH}_{2} 2 \mathrm{HCl}(250 \mathrm{mg}, 2.4 \mathrm{mmol})$, $\mathrm{HOBt}(350 \mathrm{mg}, 2.4 \mathrm{~mol})$, DIEA (1.4 mL) and EDCI ($460 \mathrm{mg}, 2.4 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h , and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: DCM : ethyl acetate $=4$: 1) to give Z-L- Pro-NHNH \mathbf{N}_{2}.

Procedure for the synthesis of Z-7: To a solution of 1-Z-4-Boc-L-Piperazine-2-carboxylic acid (730 $\mathrm{mg}, 2 \mathrm{mmol}$) in DCM (20 mL) was added Z-L-Pro- NHNH_{2} ($631 \mathrm{mg}, 2.4 \mathrm{mmol}$), HOBt (350 mg , 2.4mol), DIEA (1.4 mL) and EDCI ($460 \mathrm{mg}, 2.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 24 h , and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: Hexane: ethyl acetate $=1: 1$) to give Z-7.
Procedure for the synthesis of 7: Compound Z-7 (1.0 g), $5 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$ and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until Z-7 disappeared completely (monitored by TLC), the solution was filtered. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}=$ 10:1) to give 7.
7: off-white solid; Yield: 50%; $[\alpha]_{\mathrm{D}}{ }^{25}=+46.6(\mathrm{c}=0.336, \mathrm{MeOH}) ; \mathrm{mp} 64.7-67.7 ;{ }^{1} \mathrm{HNMR}(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.77-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.71(\mathrm{~m}$, 1 H), 2.93-3.10 (m, 5H), 3.37 (dd, $J=3.36 \mathrm{~Hz}, 9.54 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.78(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 25.2,27.2,30.4,43.5,46.4,56.9,59.3,80.1,94.3,154.9,169.9$, 172.9. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}+\mathrm{Na}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 364.1955$, found m / z 364.1939.

Procedure for the synthesis of Z-8: To a solution of pyridine-2-carboxylic acid ($295 \mathrm{mg}, 2.4 \mathrm{mmol}$) in DCM (20 mL) was added Z-L-Pro-NHNH $2(530 \mathrm{mg}, 2 \mathrm{mmol})$, HOBt ($350 \mathrm{mg}, 2.4 \mathrm{~mol}$), N,NDiisopropylethylamine (DIEA, $700 \mu \mathrm{~L}$) and EDCI ($460 \mathrm{mg}, 2.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc $(20 \mathrm{~mL})$, and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10$ $\mathrm{mL})$, aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal
of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=1: 1$) to give $\mathbf{Z - 8}$
Procedure for the synthesis of 8: Compound Z-8 (1.0 g), $5 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$ and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until Z-8 disappeared completely (monitered by TLC), the solution was filtered. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}=$ 10: 1) to give 8.
8: Yellow solid; Yield: 55%; $[\alpha]_{D}{ }^{25}=-20(c=0.12, \mathrm{MeOH})$; The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra show a double set of peaks in a ratio of about 2: 1 due to different conformers. ${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ (ppm) 1.81-1.96 (m, 2H), 2.02-2.07 (m, 1H), 2.21-2.27 (m, 1H), $2.90(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 3.96$ and $4.07(\mathrm{dd}, J=6.06 \mathrm{~Hz}, 8.46 \mathrm{~Hz}$, and q, $J=4.62 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.95-8.00(\mathrm{~m}, 1 \mathrm{H}), 8.09-8.11$ $(\mathrm{m}, 1 \mathrm{H}), 8.63-8.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 24.5,24.8,29.3,30.1,46.3,59.7$, 61.4, 121.9, 122.4, 126.6, 127.0, 137.4, 148.6, 149.1, 162.5, 164.7, 170.4, 173.8. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 235.1190$, found $\mathrm{m} / \mathrm{z} 235.1203$.
Procedure for the synthesis of Boc-9: To a solution of Z-L-Phenylalanine ($400 \mathrm{mg}, 2.4 \mathrm{mmol}$) in DCM (20 mL) was added L-Boc-Pro-NHNH ($460 \mathrm{mg}, 2 \mathrm{mmol}$), HOBt ($350 \mathrm{mg}, 2.4 \mathrm{~mol}$), DIEA (700 $\mu \mathrm{L})$ and EDCI ($460 \mathrm{mg}, 2.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h , and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=1$:

1) to give Boc-9.

Procedure for the synthesis of $\mathbf{9}$ is similar to that for 1 .

9: white solid; Yield: $61 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-48.9$. $(\mathrm{c}=0.552, \mathrm{MeOH}) ; \mathrm{mp} 153.7-154.7 ;{ }^{1} \mathrm{HNMR}(600 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$ and $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.79-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=$ $9.9 \mathrm{~Hz}, 13.86 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=4.74 \mathrm{~Hz}, 13.92 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (dd, $J=6.12 \mathrm{~Hz}, 8.70 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=4.74 \mathrm{~Hz}, 9.72 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-5.05(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.33(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$ and $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 25.2,30.4,37.8,46.5,55.1,59.3,66.2,126.3$, $127.3,127.5,128.0,128.3,129.2,136.7,137.1,156.8,170.9,172.7$. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 411.2027$, found $\mathrm{m} / \mathrm{z} 411.2006$.
Procedure for the synthesis of Boc-10: Compound Boc-9 (1.0 g), 5\% Pd/C (0.1 g) and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until Boc-9 disappeared completely (monitored by TLC), the solution was filtered. After removal of solvent under reduced pressure, the residue was diluted with DCM . The solution was added TEA ($1.4 \mathrm{~mL}, 10 \mathrm{mmol}$) and TFAA $(600 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h , quenched with MeOH , and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (30 mL), and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=1: 1$) to give Boc-10.
Procedure for the synthesis of 10: Compound Boc-10 (1.0 g) reacted with a mixture of TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1: 2, 20 mL) for an hour and then concentrated under reduced pressure. The residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}=10: 1$) to give $\mathbf{1 0}$.
10: white solid; Yield: $63 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-22.6(\mathrm{c}=0.212, \mathrm{MeOH}) ; \mathrm{mp} 194-196 ;{ }^{1} \mathrm{HNMR}(600 \mathrm{MHz}$,
$\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$ 1.97-2.04 (m, 2H), 2.05-2.19 (m, 1H), 2.32-2.38 (m, 1H), 2.99 (dd, $J=10.02 \mathrm{~Hz}$, $14.10 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.22(\mathrm{~m}, 1 \mathrm{H}), 327-3.30(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.14(\mathrm{brs}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=5.16 \mathrm{~Hz}, 9.78 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21-7.25(\mathrm{~m} 1 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 24.2,29.8,37.0,46.2$, 53.4 and $53.5,58.9,114.9,116.8,126.6,128.1,128.9,136.3,157.2,157.4,169.6,169.8$; ESI HRMS exact mass calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}-\mathrm{H}\right)^{-}$requires $\mathrm{m} / \mathrm{z} 371.13256$, found $\mathrm{m} / \mathrm{z} 371.1312$.
Procedure for the synthesis of Boc-11: Compound Boc-9 (1.0 g), 5\% Pd/C (0.1 g) and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until Boc-9 disappeared completely (monitered by TLC), the solution was filtered. After removal of solvent under reduced pressure, the residue was diluted with DMF $(30 \mathrm{~mL})$. The solution was added TEA $(835 \mu \mathrm{~L}, 6$ $\mathrm{mmol})$ and $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Br}(360 \mu \mathrm{~L}, 3.0 \mathrm{mmol})$ at room temperature. After the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 5 h , then cooled to room temperature. The reaction mixture was added saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and was extracted four times with EtOAc $(40 \mathrm{~mL}$ each $)$.The organic layers were combined, washed with brine (40 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=1: 2$) to give Boc-11.
Procedure for the synthesis of 11: Compound Boc-11 (1.0 g) reacted with a mixture of TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1: 2,20 \mathrm{~mL})$ for an hour and then concentrated under reduced pressure. After chromatography on a H^{+} ion-exchange resin column eluted with $\mathrm{NH}_{3} \mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{M})$ and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}=10: 1$) to give 11.
11: off-white solid; Yield: $45 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+13.0(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ (ppm) 1.61-1.74 (m, 1H), 1.81-1.90 (m, 6H), 2.06-2.18 (m, 1H), 2.65-2.71 (m, 1H), 2.79 (brs, 3 H), 2.95-2.99 (m, 1H), 3.03-3.13 (m, 3H), 3.25-2.27 (t, $J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.78(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.19(\mathrm{~m}$, 1 H), 7.22-7.34 (m, 4H); ${ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 22.8,25.0,30.2,37.3,46.4,50.7,59.0$, $68.1,126.1,128.0,129.0,137.7,170.6,172.0$ R ESI HRMS exact mass calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}\right)^{+}$ requires $\mathrm{m} / \mathrm{z} 331.2129$, found $\mathrm{m} / \mathrm{z} 331.2117$.
Procedure for the synthesis of Boc-12: To a solution of Boc-L-Pro ($520 \mathrm{mg}, 2.4 \mathrm{mmol}$) in DMF (20 mL) was added hydrazine dihydrochloride $\left(\mathrm{NH}_{2} \mathrm{NH}_{2} 2 \mathrm{HCl}, 106 \mathrm{mg}, 1 \mathrm{mmol}\right)$, $\mathrm{HOBt}(350 \mathrm{mg}, 2.4 \mathrm{~mol})$, DIEA (1.4 mL) and EDCI ($460 \mathrm{mg}, 2.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h , and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, aqueous $\mathrm{HCl}(1.0 \mathrm{M}$, 10 mL) and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=1: 1$) to give Boc-12.
Procedure for the synthesis of 12: Compound Boc-12 (1.0 g) reacted with a mixture of TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1: 2,20 \mathrm{~mL})$ for an hour and then concentrated under reduced pressure. After chromatography on a H^{+} ion-exchange resin column eluted with $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{M})$ and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}\left(\mathrm{NH}_{3}\right)=10$: 1) to give 12.

12: white solid; Yield: $71 \% ;[\alpha]_{D}{ }^{25}=-56.0 .(c=0.48, \mathrm{MeOH}) ; \mathrm{mp} 155.3-158.3 ;{ }^{1} \mathrm{HNMR}(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$ 1.75-1.85 $(\mathrm{m}, 2 \mathrm{H}), 1.88-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.93-297(\mathrm{~m}, 1 \mathrm{H})$, 3.04-3.08 (m, 1H), $3.75(\mathrm{dd}, J=5.94 \mathrm{~Hz}, 8.64 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 25.3$, 30.4, 46.5, 59.3, 172.5. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{Na}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 249.1322$, found $\mathrm{m} / \mathrm{z} 249.1310$.

Procedure for the synthesis of Boc-13: To a solution of $\mathbf{1 2}(652 \mathrm{mg}, 2 \mathrm{mmol})$ in DMF (20 mL) was added benzaldehyde ($245 \mu \mathrm{~L}, 2.4 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 0.5 h at room temperature, and then $\mathrm{NaBH}_{3} \mathrm{CN}(265 \mathrm{mg}, 4 \mathrm{mmol})$ was added in portions and the reactions mixture was stirred for another 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and then concentrated under reduced pressure. After the residue was diluted with EtOAc (30 mL), and the organic phase was washed with aqueous $\mathrm{NaOH}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: Hexane: ethyl acetate $=1: 1$) to give Boc-13.
Procedure for the synthesis of 13: Compound Boc-13 (1.0 g) was treated with a mixture of TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 2,20 \mathrm{~mL})$ for an hour and then concentrated under reduced pressure. After chromatography on a H^{+}ion-exchange resin column eluted with $\mathrm{NH}_{3} \mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{M})$ and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}=$ 10:1) to give 13.
13: white solid; Yield: $50 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-20.8(\mathrm{c}=0.048, \mathrm{MeOH}) ;{ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$ 1.78-1.86 (m, 1H), 1.87-1.97 (m, 4H), 2.00-2.04 (m, 1H), 2.18-2.27 (m, 1H), 2.34-2.38 (m, 1 H$)$, 2.98-3.01 (m, 1H), 3.07-3.11 (m, 2H), 3.19-3.25 (m, 2H), $3.49(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.99(\mathrm{~m}, 2 \mathrm{H})$, $7.28(\mathrm{t}, \mathrm{J}=7.26 \mathrm{~Hz}, 7.44 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.26 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=7.08 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{CNMR}(150$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 23.2,24.7,30.0,46.3,53.0,58.9,59.3,66.1,126.9,127.9,128.9,138.2,170.2$, 173.5. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 317.1972$, found $\mathrm{m} / \mathrm{z} 317.1982$.

Procedure for the synthesis of Z-14: To a solution of Z-L-Pro ($600 \mathrm{mg}, 2.4 \mathrm{mmol}$) in DCM (20 mL) was added L-Boc-Pro-NHNH $2(460 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{HOBt}(350 \mathrm{mg}, 2.4 \mathrm{mmol})$, DIEA $(700 \mu \mathrm{~L})$ and EDCI $(460 \mathrm{mg}, 2.4 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , and then concentrated under reduced pressure. After the resulting mixture was diluted with EtOAc (20 mL), and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$ and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=1: 1$) to give Z-14.
Procedure for the synthesis of $\mathbf{1 4}$: Compound $\mathbf{Z}-\mathbf{1 4}(1.0 \mathrm{~g}), 5 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$ and methanol (30 mL) were charged in a two-neck flask (100 mL). After stirred under hydrogen (1 atm) until $\mathbf{Z - 1 4}$ disappeared completely (monitored by TLC), the solution was filtered. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}=$ 10: 1) to give 14.
14: white solid; Yield: $66 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-73.0 .(\mathrm{c}=0.104, \mathrm{MeOH}) ; \mathrm{mp} 153.7-156.0 ;{ }^{1} \mathrm{HNMR}(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 1.47(\mathrm{~d}, J=11.34 \mathrm{~Hz}, 9 \mathrm{H}), 1.82-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.10(\mathrm{~m}, 2 \mathrm{H})$, 2.19-2.30 (m, 1H), 2.97-3.00 (m, 1H), 3.41-3.45 (m, 1H), 3.52-3.54 (brs, 1H), $3.80(\mathrm{dd}, J=6.06 \mathrm{~Hz}$, $8.46 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 23.2,23.9,25.2,27.2,30.0$, $30.4,31.1,46.4,46.8,48.2,59.1,80.1,154.7,172.4,172.7$. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}-\mathrm{H}\right)^{-}$requires $\mathrm{m} / \mathrm{z} 325.1870$, found $\mathrm{m} / \mathrm{z} 325.1887$.
Procedure for the synthesis of Boc-15: To a solution of Boc-12 ($831 \mathrm{mg}, 2 \mathrm{mmol}$) in THF (20 mL) was added benzyl bromide ($260 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) and sodium hydride ($250 \mathrm{mg}, 4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h , and then quenched with $\mathrm{H}_{2} \mathrm{O}$. The mixture was added EtOAc (30 mL), and the organic phase was washed with brine $(10 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: hexane: ethyl acetate $=3: 1$) to give Boc-15.

Procedure for the synthesis of 15: Compound Boc-15 (1.0 g) was treated with a mixture of TFA: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 2,20 \mathrm{~mL})$ for an hour and then concentrated under reduced pressure. After chromatography on a H^{+}ion-exchange resin column eluted with $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{M})$ and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel (eluent: $\mathrm{DCM}: \mathrm{MeOH}=$ 10: 1) to give 15.
15: white solid; Yield: $62 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-56.0(\mathrm{c}=0.116, \mathrm{MeOH}) ; \mathrm{mp} 101.3-103.7 ;{ }^{1} \mathrm{HNMR}(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 1.59-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.82(\mathrm{~m}, 5 \mathrm{H}), 1.99-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.80(\mathrm{~m}, 1 \mathrm{H})$, 2.81-2.85 (m, 1H), 2.94-2.98 (m, 1H), 3.11-3.15 (m, 1H), $3.55(\mathrm{dd}, J=6.18 \mathrm{~Hz}, 8.46 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}$ $=6.36 \mathrm{~Hz}, 8.82 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.93(\mathrm{brs}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$ $25.5,25.6,30.1,30.5,46.6,50.5,57.5,58.9,127.6,128.3,128.7,135.5,174.2,175.7$. ESI HRMS exact mass calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{Na}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 339.1791$, found $\mathrm{m} / \mathrm{z} 339.1779$.
General procedure for aldol reaction in toluene using catalyst 15: To a solution of $15(0.04 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) in a mixture of acetone (0.4 mL) and toluene (1.6 mL) was added TFA (0.04 mmol). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes, and then aldehyde (0.2 mmol) was added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for another $4-72 \mathrm{~h}$ and then was quenched with saturated ammonium chloride solution (1 mL) and the layers were separated. The aqueous layer was extracted three times (15 mL each) with ethyl acetate. The combined organic layers was washed with brine (5 mL) and dried over anhydrous MgSO_{4}. After removal of solvent, the residue was purified through flash column chromatography on silica gel (eluent: Hexane: $\mathrm{AcOEt}=3: 1$) to give the pure aldol adducts.

Selected NMR Spectra

(1)

(5)

(6)

(9)

(14)

(12)

(15)

HPLC spectra of 16a-g

(16a)Racemic

Software Version : 6.2.1.0.104:0104	Date	$: 2005-6-309: 24: 03$	
Sample Name $:$	Data Acquisition Time $: 2004-1-1817: 39: 04$		
Instrument Name $:$ HPLC	Channel	$:$ A	
Rack/Vial	$: 0 / 0$	Operator	$:$ manager
Sample Amount $: 1.000000$	Dilution Factor	$: 1.000000$	
Cycle	1		

Result File : D: \LClwylas30\2004-10\041018-h2o-ac.rst
Sequence File : C:\PenExe\TcWS \backslash Ver6.2.1\Examples $\backslash 041018-\mathrm{h} 20-\mathrm{ac} . \mathrm{seq}$

Missing Component Report
Component Expected Retention (Calibration File)
All components were found

Enantiomeric excess: 96\%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane $=30 / 70$), UV 254 nm , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. R-isomer, $t_{R} 13.4 \mathrm{~min}$ and S-isomer, $t_{R} 18.6$.

Missing Component Report
Component Expected Retention (Calibration File)

All components were found

(16b)Racemic

Software Version : 6.2.1.0.104:0104			
Sample Name $:$ ccl	Date	$: 2005-6-30$	$9: 29: 22$
Instrument Name $:$	HPLC	Data Acquisition Time	$: 2005-3-2$
Rack/Vial	$: 0 / 0$	Channel	$:$ A
Sample Amount	$: 1.000000$	Operator	$:$ manager
Cycle	$: 1$	Dilution Factor	$: 1.000000$

Result File : D: ILClccl44-OH-4-(2'-NO2Ph)-butan-2-onel050302-7-45-2xx.rst
Sequence File : C:IPenExelTcWS \backslash Ver6.2.1\Examples1050302-7-45-2-20050302-104752.seq

Peak \#	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]
1	9.138	1843028.46	98589.76	50.11
2	12.553	1834727.19	71195.47	49.89

Missing Component Report
Component Expected Retention (Calibration File)
All components were found

16b

Enantiomeric excess: 96\%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane $=30 / 70$), UV 254 nm , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. R-isomer, $t_{R} 12.1 \mathrm{~min}$ and S-isomer, t_{R}. 9.2.

				Page 1 of 1
Software Version	: 6.2.1.0.104:0104	Date	: 2005-5-23 16:55:50	
Sample Name	: ccl	Data Acquisition Time	: 2005-3-2 12:01:04	
Instrument Name	: HPLC	Channel	: A	
Rack/Vial	: 0/0	Operator	: manager	
Sample Amount	: 1.000000	Dilution Factor	: 1.000000	
Cycle	: 1			

Result File : D: $\mathrm{LClccl} \backslash 4-\mathrm{OH}-4-\left(2^{\prime}-\mathrm{NO} 2 \mathrm{Ph}\right)$-butan-2-onel050302.rst Sequence File : C:IPenExelTcWS \backslash Ver6.2.1\Examples\050302-7-50-5.seq

Missing Component Report
Component Expected Retention (Calibration File)

All components were found

(16c)Racemic

Software Version $:$	$6.2 .1 .0 .104: 0104$	Date	$: 2005-6-309: 37: 10$
Sample Name $\quad:$ cl	Data Acquisition Time	$: 2005-3-214: 48: 04$	
Instrument Name	$:$ HPLC	Channel	$:$ A
Rack/Vial	$: 0 / 0$	Operator	\vdots manager
Sample Amount	$: 1.000000$	Dilution Factor	$: 1.000000$
Cycle	$: 1$		

Result Fie : D: LLC\ccl14-OH-4-(3'-NO2Ph)-butan-2-onel050302-7-45-1 xx.rst
Sequence File : C:IPenExe\TcWSIVer6.2.1\Examples1050302-7-45-1xx.seq

REPORT

$\underset{\#}{\text { Peak }}$	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{u}^{*} \text { *sec }\right]} \end{gathered}$	Height [uV]	Area [\%]
1	18.063	1994478.81	65312.99	50.50
2	20.269	1955125.98	58671.40	49.50

Missing Component Report
Component Expected Retention (Calibration File)
PE serise200
0.001

16c

Enantiomeric excess: 96\%, determined by HPLC (Daicel Chiralpak OJ-H, i-PrOH/Hexane $=20 / 80$), UV 254 nm , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. R-isomer, $t_{R} 17.6$, min and S-isomer, t_{R}. 20.3.

Missing Component Report
Component Expected Retention (Calibration File)
PE serise200
0.001

(16d)Racemic

Software Version : 6.2.1.0.104:0104	Date	Dage	2005-6-30 9:46:17
Sample Name	Data Acquisition Time	$: 2005-3-316: 18: 49$	
Instrument Name $:$ HPLC	Channel	$:$ A	
Rack/Vial	$: 0 / 0$	Operator	$:$ manager
Sample Amount	$: 1.000000$	Dilution Factor	$: 1.000000$
Cycle	$: 1$		

Result File : D: LLClccl $44-\mathrm{OH}-4-\left(4^{\prime}-\mathrm{CNPh}\right)$-butan-2-onel050303-7-45-5xx.rst
Sequence File : C:\PenExelTcWS\Ver6.2.1 \backslash Examples $\backslash 050303-7-45-5 x x$.seq

REPORT

Peak \#	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]
1	12.507	3157899.87	116934.08	48.08
2	22.508	3410008.99	45858.60	51.92
		6567908.86	162792.67	100.00

Missing Component Report
Component Expected Retention (Calibration File)
All components were found

Enantiomeric excess: 92\%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane $=30 / 70$), UV 254 nm , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. R-isomer, $t_{R} 12.3$, min and S-isomer, t_{R}. 23.4.

> REPORT

Peak \#	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{u} \mathrm{~V}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]
1	12.297	12188228.75	363823.08	96.20
2	23.375	481727.00	7644.19	3.80

Missing Component Report
Component Expected Retention (Calibration File)
All components were found

(16e)Racemic

Page 1 of 1

Software Version : 6.2.1.0.104:0104	Date	$: 2005-6-3017: 54: 20$	
Sample Name	ccl	Däta Acquisition Time $: 2005-6-2015: 59: 13$	
Instrument Name $:$ HPLC	Channel	$:$ A	
Rack/Vial	$: 0 / 0$	Operator	$:$ manager
Sample Amount	$: 1.000000$	Dilution Factor	$: 1.000000$
Cycle	$: 1$		

Result File : D:\LC\ccI\4-OH-4-(2'-CIPh)-butan-2-onel2005\050620-11-4-2.rst
Sequence File : C: \backslash PenExelTcWS $\backslash V e r 6.2$. I Examples $\backslash 050620-10-44-1-20050620-155658 . \mathrm{seq}$

REPORT

Peak \#	$\begin{aligned} & \text { Time } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{u}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]
1	11.760	4557925.99	200657.64	51.26
2	15.227	4334687.92	135058.81	48.74

Missing Component Report
Component Expected Retention (Calibration File)
PE serise200
0.001

16e

Enantiomeric excess: 96\%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane $=8 / 92$), UV 262 nm , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. R-isomer, $t_{R} 16.2$, min and S-isomer, $t_{R} .12 .8$.

(16f)-Racemic

Software Version : 6.2.1.0.104:0104	Date	$: 2005-6-309: 51: 53$	
Sample Name	ccl	Data Acquisition Time	$: 2005-3-918: 20: 24$
Instrument Name	$:$ HPLC	Channel	$:$ A
Rack/Vial	$: 0 / 0$	Operator	$:$ manager
Sample Amount	$: 1.000000$	Dilution Factor	$: 1.000000$
Cycle	$: 1$		

Result File : D: \LClccl\4-OH-4-(4-CH3Ph)-butan-2-onel050309
Sequence File : C:\PenExe\TcWS $\backslash V e r 6.2$.I\Examples $\backslash 050309-7-45-6 x x . s e q$

Peak \#	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]
1	10.280	358545.15	19854.25	49.37
2	12.610	367639.71	13653.70	50.63
		726184.85	33507.96	100.00

Missing Component Report

Component Expected Retention (Calibration File)

PE serise200
0.001

Enantiomeric excess: 87%, determined by HPLC (Daicel Chiralpak AS-H, i-PrOH/Hexane $=15 / 85$), UV 257 nm , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. R-isomer, $t_{R} 10.2$, min and S-isomer, t_{R}. 12.9.

Missing Component Report
Component Expected Retention (Calibration File)
PE serise200
0.001

(16g)Racemic

Software Version : $6.2 .1 .0 .104: 0104$			
Sample Name $:$ ccl	Date	$: 2005-6-3010: 00: 28$	
Instrument Name $:$ HPLC	Data Acquisition Time	$: 2005-3-10$	$9: 30: 58$
Rack/Vial	$: 0 / 0$	Channel	$:$ A
Sample Amount	$: 1.000000$	Operator	$:$ manager
Cycle	$: 1$	Dfiution Factor	$: 1.000000$

Result File : D: $\mathrm{LCClcc} 144-\mathrm{OH}-4-\mathrm{Ph}$-butan-2-onel050310
Sequence File : C:\PenExelTcWS\Ver6.2.1\Examples\050310-7-43-6xx.seq

DEFAULT REPORT

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { Time } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]
1	11.152	68360.21	3735.33	51.46
2	12.893	64489.30	3072.88	48.54

Missing Component Report
Component Expected Retention (Calibration File)
PE serise200
0.001

Enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak AS-H, $\mathrm{i}-\mathrm{PrOH} / \mathrm{Hexane}=15 / 85$), UV 257 nm , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. R-isomer, $t_{R} 10.9$, min and S-isomer, $t_{R} .12 .8$.

			Page 1 of 1	
Software Version : $6.2 .1 .0 .104: 0104$	Date	$: 2005-5-23$	$17: 03: 29$	
Sample Name	\vdots ccl	D2ta Acquisition Time	$: 2005-3-10$	$9: 57: 24$
Instrument Name	$:$ HPLC	Channel	$:$ A	
Rack/Vial	$: 0 / 0$	Operator	$:$ manager	
Sample Amount	$: 1.000000$	Dilution Factor	$: 1.000000$	
Cycle	$: 1$			

Result File : D: LLClecl44-OH-4-Ph-butan-2-onel050310.rst
Sequence File : C:\PenExelTcWS\Ver6.2.1\Examples1050310-8-4-6.seq

				DEFA
Peak \#	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]
1	10.880	1738107.56	79010.38	95.00
2	12.848	91500.15	4268.42	5.00
		1829607.71	83278.81	100.00
Missing Component Report				
Component		Expected Re	etention (Ca	alibration File)
PE serise 200				0.001

X-ray analysis. Single crystal diffraction data were measured by an Enraf-Nonius CCD single-crystal x-ray diffractometer at 286 K . Intensity data were collected with a Siemens P4 four -circle diffractometer with a graphite-monochromated $\operatorname{MoK}_{\alpha}(\lambda=0.71073 \AA)$ radiation. The structure was solved by direct methods using SHELX-97 and refined by full-matrix least-squares with SHELX-97.
Crystal data for 12: $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}(286 \mathrm{~K}) . \mathrm{M}=226.28$, orthorhombic, space group $\mathrm{P}_{2} 2_{1} 2_{1}, a=9.705$ (1) $\AA, b=7.660$ (1) $\AA, c=7.818$ (1) $\AA, \alpha=\beta=\gamma=90^{\circ}, V=581.23$ (17) $\AA^{3}, Z=2, \rho_{\text {calc }}=1.293 \mathrm{mg} / \mathrm{m}^{3}$, absorption coefficient $=0.093 \mathrm{~mm}^{-1}, F(000)=244$, total reflections collected 939 , unique 823 $\left(R_{\text {int }}=0.0095\right)$, final R indices $[I>2 \sigma(1)]$ were $R_{1}=0.0351, \mathrm{wR}_{2}=0.0751$.

Calculations:

Figure S1. The optimized transition structures for the aldol reaction of benzaldehyde with acetone catalyzed by 12 .

The resulting Cartesian coordinates for the four transition structures TS1, TS2, TS3 and TS4, as well as the enamine intermediate $\mathbf{E} 1$ and $\mathbf{E 2}$ formed by the condensation of acetone with, respectively, catalyst 15 and 12:

Structure of TS1:

C	0.52787100	0.20104600	3.35720400
N	-0.02648300	-0.92083100	2.57070600
C	-1.47989200	-1.02351400	2.75073600
C	-1.71178600	-0.30554700	4.08350300
C	-0.69134800	0.83170200	4.03471900
C	-2.32195400	-0.38435500	1.63380400
O	-3.50846400	-0.31850100	1.75417900
N	-1.64431400	0.05687200	0.54559200
C	0.74185700	-1.79141100	1.93547000
C	2.09542000	-1.53877300	1.68216500

C	1.94437000	-0.51210600	-0.04635900
O	1.08337900	0.41153600	0.11442900
C	0.11003000	-3.02969000	1.35782900
C	3.38832100	-0.15339100	-0.23364300
C	4.23613200	-1.01975900	-0.91067800
C	5.56389800	-0.68345500	-1.12014600
C	6.05360600	0.52395200	-0.65072600
C	5.21154000	1.39537900	0.02600700
C	3.88594900	1.05891600	0.23036200
N	-2.31740700	0.45112700	-0.58801500
C	-2.14129900	1.69595800	-1.07927300
O	-2.49284400	2.02239900	-2.17895400
C	-1.45780700	2.74257400	-0.18386800
C	-1.90468600	4.16427600	-0.54115600
N	0.00970400	2.79274700	-0.50763900
C	-3.04126300	-0.57029400	-1.35439900
C	-1.00423400	4.60569900	-1.71761500
C	0.13826800	3.57725800	-1.78257400
C	-2.15435100	-1.66968300	-1.89888100
C	-1.06116200	-1.37804700	-2.71050500
C	-2.45605300	-2.99808500	-1.63505000
C	-0.28237200	-2.39423900	-3.23441400
C	-1.68011100	-4.02110300	-2.16549900
C	-0.58965900	-3.72108300	-2.96134600
H	0.00872500	-4.51041100	-3.37901800
H	-0.62016000	5.60441600	-1.55732500
H	-0.65060300	-0.06658900	0.44232200
H	1.65171500	-1.36855100	-0.64440500
H	2.69101300	-2.39430200	1.41929100
H	-1.79407600	-2.05531100	2.79933200
H	-1.48192900	-0.98563700	4.89587800
H	-2.73465500	0.02239300	4.18966700
H	1.05722000	0.88280900	2.71136000
H	1.22372700	-0.19722300	4.08573500
H	-1.07663100	1.65472900	3.44045900
H	-0.44829900	1.22464100	5.01293400
H	2.60844800	-0.81852500	2.28995800
H	0.83772300	-3.59052300	0.79141600
H	-0.72082800	-2.79612900	0.70514800
H	-0.25514400	-3.66337200	2.15988400
H	3.85990900	-1.95771400	-1.28209700
H	6.21110900	-1.35892900	-1.64912800
H	7.08341800	0.78631400	-0.81092900
H	5.59148600	2.33239700	0.39162200

H	3.23237300	1.73119200	0.75540500
H	-1.56754500	2.50234000	0.85927500
H	-1.75091000	4.80412900	0.32101600
H	-2.95349100	4.19419500	-0.79253900
H	0.46808900	3.29695600	0.23469900
H	0.47542300	1.87123600	-0.51141300
H	-3.53939200	-0.04813700	-2.15498300
H	-3.79716000	-0.98131500	-0.70199900
H	0.01397300	2.88347400	-2.59722100
H	1.12976300	4.00203500	-1.82446700
H	-1.55077000	4.60041400	-2.64771900
H	-0.83351500	-0.35476900	-2.95184100
H	-3.30894300	-3.24118000	-1.02498200
H	0.55140000	-2.15583300	-3.87034400
H	-1.93422400	-5.04546200	-1.96073700

Structure of TS2:

C	-2.39250500	3.12619900	0.38611800
N	-2.11368100	2.25082200	-0.77183800
C	-0.93624000	2.72316300	-1.51284300
C	-0.86298100	4.20344100	-1.12775700
C	-1.29008200	4.18727900	0.33990000
C	0.38038400	2.00964900	-1.16434600
O	1.40421600	2.41808300	-1.62371500
N	0.28033300	0.92579600	-0.35971800
C	-2.93555200	1.28798100	-1.14752600
C	-3.97338000	0.83971100	-0.31586500
C	-3.03206300	-0.50651400	0.84914900
O	-1.86680900	-0.07286900	1.13389400
C	-2.68027500	0.57770000	-2.45000700
N	1.37087400	0.11262900	-0.12719900
C	1.60624800	-0.25529700	1.15862900
O	2.12192100	-1.29446000	1.45031100
C	1.24095100	0.73389600	2.27288900
C	2.31029500	0.75059300	3.37261900
N	0.03790800	0.22664600	3.01728200
C	1.79943800	-0.79826700	-1.20802600
C	1.95994700	-0.42042100	4.31789900
C	0.52385900	-0.84096600	3.95903400
C	-3.18304100	-1.80180500	0.10317600
C	-2.07579400	-2.44291000	-0.43392200
C	-4.43145500	-2.41017000	0.00174900
-2.21451700	-3.66016300	-1.08330700	
-4.57258100	-3.62368200	-0.64458700	

C	-3.46193900	-4.25010200	-1.19365500
C	3.30330600	-0.89880200	-1.34867700
C	4.05333200	0.21642200	-1.70881600
C	3.94281900	-2.11523400	-1.16470500
C	5.42232300	0.10930100	-1.87932600
C	5.31356500	-2.22444800	-1.34226800
C	6.05524100	-1.11198300	-1.69881700
H	7.11830900	-1.19392200	-1.83688900
H	-3.56964900	-5.19513700	-1.69395700
H	2.03031000	-0.11466400	5.35333500
H	-0.61042800	0.56985000	-0.05728200
H	-4.74803300	0.28084800	-0.80675000
H	-1.07057000	2.59642200	-2.57654000
H	-1.57645800	4.76042300	-1.72446800
H	0.12104400	4.61287100	-1.29721800
H	-2.39327900	2.54609200	1.29573700
H	-3.37154300	3.57082500	0.25729600
H	-0.45363200	3.90039600	0.96964000
H	-1.64434800	5.14801200	0.68882700
H	-4.33615900	1.51695200	0.43514400
H	-3.34278300	-0.26708600	-2.55050300
H	-1.66001400	0.22248400	-2.52459500
H	-2.86252600	1.25763200	-3.27646600
H	1.01238000	1.70845800	1.87782200
H	2.25478200	1.69799300	3.89767400
H	3.30307100	0.66315000	2.95708000
H	-0.33482500	0.99317200	3.55446200
H	-0.73412800	-0.06532500	2.39417700
H	1.37171500	-0.39194800	-2.11220500
H	1.37290400	-1.77948800	-1.04018200
H	0.49580700	-1.77384200	3.42244300
H	-0.15461200	-0.88795100	4.79753200
H	2.62834500	-1.25350900	4.16651200
H	-3.80287600	-0.38111000	1.60241700
H	-1.10455300	-2.00033800	-0.32496800
H	-5.29628600	-1.93518000	0.43307800
H	-1.34993800	-4.15025500	-1.49331800
H	-5.54096000	-4.08438700	-0.71536200
H	3.56461700	1.16205400	-1.85495800
H	3.37403300	-2.97984900	-0.87238300
H	5.99431400	0.97525200	-2.16047900
H	5.79746200	-3.17359000	-1.19854400

Structure of TS3:

C	0.08351600	-2.31718600	1.78665100
N	-0.15565700	-2.57629600	0.35043700
C	-1.55571500	-2.93687100	0.09606000
C	-2.06339300	-3.36275800	1.47935900
C	-1.29999300	-2.43803900	2.42754100
C	-2.41113600	-1.80347000	-0.48286900
O	-3.53245800	-2.01448000	-0.82984000
N	-1.81313600	-0.58349700	-0.57632100
C	0.81698100	-2.59741400	-0.54542500
C	2.09421300	-2.09210000	-0.27194900
C	1.82762700	-0.15088100	-0.73436300
O	0.78021600	0.26596400	-0.14218200
C	0.49945600	-3.06056000	-1.94375900
C	3.16774700	0.37834300	-0.31986200
C	4.23000200	0.36225600	-1.21407100
C	5.46222300	0.88032000	-0.85006500
C	5.63984200	1.41725700	0.41436400
C	4.58165800	1.43834900	1.31214000
C	3.35133000	0.92407100	0.94543900
N	-2.43309700	0.39422800	-1.31718700
C	-2.81503300	1.59200600	-0.81934900
O	-3.46173800	2.36431700	-1.45897600
C	-2.29795200	1.97358400	0.57682100
C	-2.91965600	3.27670300	1.07834500
N	-0.84334400	2.34637100	0.48699000
C	-2.09019100	4.40305900	0.42114000
C	-0.80888000	3.72800500	-0.10370100
H	-2.86458700	0.11598900	-2.17465800
H	-1.85591200	5.18195500	1.13407600
H	-0.81284800	-0.48497700	-0.50759100
H	1.76697600	-0.31646100	-1.80645400
H	2.87388600	-2.40371100	-0.94348900
H	-1.62946000	-3.74760100	-0.61254100
H	-1.78509400	-4.39595200	1.65226200
H	-3.13831800	-3.28493100	1.55426900
H	0.52742000	-1.34434200	1.91912800
H	0.76585500	-3.06877400	2.16581600
H	-1.78147900	-1.46676600	2.47492500
H	-1.24281700	-2.82404300	3.43650000
H	2.40623300	-2.01191700	0.75165700
H	1.35542800	-2.92333000	-2.58685600
H	-0.34045800	-2.52434800	-2.36984100
H	0.25009900	-4.11654500	-1.93561900
H	4.09683600	-0.04909400	-2.20023500

H	6.27735500	0.86756200	-1.55025100
H	6.59524700	1.81852900	0.69929200
H	4.71936800	1.85530900	2.29352100
H	2.52912100	0.94004400	1.63685900
H	-2.39570800	1.14330400	1.25827400
H	-2.83379400	3.31410400	2.15891900
H	-3.96579300	3.33415200	0.82271100
H	-0.47637600	2.37923900	1.42522300
H	-0.23559400	1.66200000	0.01298100
H	-0.81526000	3.61382200	-1.17638100
H	0.11187700	4.20641400	0.19299500
H	-2.62960500	4.85028000	-0.39963000

Structure of TS4:

C	0.01032700	2.82283700	-1.70769100
N	0.65009800	2.52119700	-0.40840800
C	-0.15517300	3.02471700	0.71111900
C	-1.03826700	4.09093000	0.05158000
C	-1.30804100	3.50388600	-1.33411600
C	-1.01055600	1.95855500	1.40502900
O	-1.62931900	2.22834400	2.38832700
N	-1.01130700	0.72205700	0.83389600
C	1.85315000	1.98499600	-0.30932300
C	2.49482100	1.40179100	-1.41321200
C	1.74023800	-0.45712700	-1.42371700
O	0.48557500	-0.39682800	-1.20369700
C	2.49950500	1.89710600	1.04745300
N	-1.55068100	-0.32375300	1.54666000
C	-2.58326400	-1.07961600	1.10211100
O	-3.12668900	-1.87685200	1.80309700
C	-2.97053800	-0.94593500	-0.37954200
C	-4.21868000	-1.76079900	-0.71707900
N	-1.93224600	-1.61441800	-1.23817300
C	-3.71332900	-3.20467800	-0.93493500
C	-2.18777800	-3.09056400	-1.11794100
C	2.62884900	-1.22928200	-0.48878500
C	2.15232300	-1.69207100	0.73061600
C	3.93066500	-1.54481900	-0.86784200
C	2.96812300	-2.43907700	1.56660100
H	4.74607900	-2.28995900	-0.03626400
H	-4.26616700	-2.73630500	1.18713000
H	4.89773900	-3.31779100	1.83361200
	-0.32186500	2.53579400	

H
H

H

H

H
H
H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H
H
H

-0.28625600	0.45438700	0.18833000
3.55530500	1.26441200	-1.31001700
0.46734800	3.45172600	1.48206500
-0.47368400	5.01262200	-0.02980300
-1.92912500	4.28899500	0.62967700
-0.12530000	1.91423400	-2.27178900
0.65687800	3.48970700	-2.26522400
-2.11102700	2.77603500	-1.28468700
-1.59148200	4.25358900	-2.06063000
2.19184700	1.72645400	-2.39155700
3.41283200	1.32702600	0.99039000
1.85106700	1.42812400	1.77759200
2.73791500	2.89519800	1.40145600
-3.02845200	0.09338800	-0.66215800
-4.66133400	-1.36535400	-1.62492100
-4.95302500	-1.69643300	0.07005200
-2.09329800	-1.32736500	-2.19100500
-0.95508600	-1.33370900	-1.06453000
-1.64220600	-3.43676500	-0.25394200
-1.79817300	-3.58036100	-1.99713700
-3.93340900	-3.82298800	-0.07820500
2.05203500	-0.56528400	-2.45740200
1.14076700	-1.48145700	1.02240300
4.30737400	-1.21051300	-1.81958600
2.58900000	-2.79368100	2.50812100
5.74858000	-2.52847800	-0.34137400

Structure of E1:

C	0.96847900	3.21408900	-1.45702800
N	1.46981400	2.36464100	-0.37647800
C	0.62475400	2.46815100	0.80414800
C	-0.35974500	3.60852600	0.47949400
C	-0.45953500	3.55634800	-1.04378000
C	-0.14388300	1.18730900	1.12959200
O	-0.74471000	1.05368300	2.15310300
N	-0.17751300	0.22643200	0.13647500
C	2.85801200	2.14300100	-0.28978100
C	3.68532200	2.38400100	-1.29870800
C	3.37457800	1.58072300	1.01233600
N	-0.63494400	-1.03431500	0.45321300
C	-1.85611800	-1.41379000	0.06912600
O	-2.30867200	-2.51883300	0.24812600
C	-2.75005300	-0.38530700	-0.63919700
C	-3.48161200	0.56838600	0.33593600

N
C
C
C
C
C
C
C

C
C
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

H

-3.86182500	-1.19632000	-1.26983300
0.23313500	-1.92512100	1.23664800
-4.84849500	-0.08375200	0.56127400
-5.18892800	-0.65534400	-0.80572900
1.46889800	-2.36099600	0.47722300
2.71485200	-2.29103700	1.08240900
1.37338300	-2.88708800	-0.80783000
3.84988700	-2.73165400	0.41649800
2.50404600	-3.31938700	-1.47662200
3.74732300	-3.24128900	-0.86504200
4.62519500	-3.58088800	-1.38349900
-5.91375600	-1.45497300	-0.81017500
0.56805500	0.24811900	-0.52904000
4.73083900	2.16742700	-1.19728100
1.17577100	2.69730800	1.70379000
0.08670900	4.54660600	0.78809000
-1.30264600	3.50583900	1.00001600
1.01870500	2.69835100	-2.40873700
1.57178200	4.11425700	-1.53907400
-1.14570500	2.77414700	-1.35845700
-0.80086700	4.48688500	-1.47905900
3.37077800	2.78786700	-2.24097900
4.40141600	1.26608500	0.89418300
2.80065300	0.71954800	1.33719500
3.34476500	2.31877500	1.80757600
-2.21654300	0.13643000	-1.41520700
-3.59867600	1.53680600	-0.13587500
-2.92397800	0.70525400	1.24955200
-3.79113200	-1.22898000	-2.27388400
-3.72958300	-2.14495900	-0.92124400
0.50035500	-1.39910200	2.14234700
-0.37079000	-2.77503400	1.51142400
-4.78353100	-0.87787600	1.29605300
-5.59561800	0.62324100	0.89458600
-5.49110900	0.11235600	-1.50359600
2.80473900	-1.90151300	2.08155100
0.4117100	-2.97769200	-1.28157100
4.80806800	-2.67454900	0.89993800
2.41745800	-3.72621800	-2.46788600

Structure of E2:

C

-3.98337900	-0.51795100	-0.64124600
-2.87961700	0.23720900	-0.04833800
-2.08129000	-0.61370700	0.82507600

C	-2.80260600	-1.97866300	0.81397800
C	-3.54654900	-1.97266100	-0.52023300
C	-0.64426600	-0.78069900	0.35006400
O	0.21860700	-1.24938000	1.03926300
N	-0.39258900	-0.42697800	-0.94831400
C	-3.06779700	1.60537200	0.22606300
C	-4.11211900	2.29234900	-0.21933400
C	-1.97631000	2.28828000	1.01631700
N	0.90220500	-0.49193200	-1.38553600
C	1.82219500	0.33350500	-0.84670900
O	1.58605000	1.38051600	-0.31703200
C	3.27195800	-0.14619800	-0.95696400
C	3.60358900	-1.26104900	0.06253000
N	4.12531600	1.02381300	-0.53492100
C	4.13128600	-0.50163800	1.28190400
C	4.95457000	0.61844900	0.66357100
H	1.18934400	-1.40344500	-1.67017400
H	5.10646900	1.48472600	1.28867000
H	-1.02241700	0.16087400	-1.44650200
H	-4.18275700	3.34506900	-0.02555200
H	-2.00589300	-0.23910600	1.83572200
H	-3.51080100	-1.99993900	1.63411600
H	-2.12143900	-2.80910700	0.94508900
H	-4.14853200	-0.20798800	-1.66577700
H	-4.90470600	-0.34587100	-0.08971600
H	-2.88116100	-2.24161300	-1.33473700
H	-4.38492600	-2.65717500	-0.53765000
H	-4.91217400	1.85665400	-0.78454000
H	-2.14304200	3.35622300	1.02259300
H	-0.99440900	2.10554600	0.59165800
H	-1.95676200	1.95596900	2.04938000
H	3.51635500	-0.41330300	-1.97517800
H	4.36751100	-1.91071100	-0.34753700
H	2.73202800	-1.85396400	0.29862100
H	4.69385600	1.37694900	-1.28778200
H	3.47161800	1.76047500	-0.27583200
H	3.31141400	-0.09957600	1.86507800
H	4.73400500	-1.12352500	1.92913000
H	5.90627000	0.26662400	0.29274100

The resulting energies (in atomic unit) of the enamine intermediates and the transition states by various methods, as well as the thermal corrections obtained by the harmonic vibrational frequency analysis:
HF/6-31G* B3LYP/6-31G* B3LYP/6-31G* B3LYP/6-311+G** ZPE H Gibbs S

	optimized	sp gas phase	iefpcm (toluene)	iefpcm (toluene)	corr.	corr.	Corr.	cal $/ \mathrm{mol} \cdot \mathrm{K}$
E1	-1141.55920	-1148.80456	-1148.83395	-1149.14953	0.51739	0.54155	0.46059	170.39
TS1	-1484.97009	-1494.38182	-1494.39981	-1494.80578	0.63843	0.66861	0.57527	196.46
TS2	-1484.96375	-1494.37592	-1494.39506	-1494.80070	0.63841	0.66854	0.57553	195.76
E2	-872.97962	-878.43855	-878.47927	-878.73199	0.40005	0.41875	0.35201	140.48
TS3	-1216.38764	-1224.01414	-1224.04175	-1224.38634	0.52055	0.54543	0.46474	169.83
TS4	-1216.38696	-1224.01313	-1224.04133	-1224.38540	0.52092	0.54558	0.46584	167.84

Note: the single point energies in solvent contain the non-electrostatic contributions.

The resulting activation energies (in $\mathrm{kcal} / \mathrm{mol}$) with the thermal corrections:

	$\mathrm{HF} / 6-31 \mathrm{G}^{*}$	B3LYP/6-31G*	B3LYP/6-31G*	B3LYP/6-311+G**	ZPE	H	Gibbs	S	H	G
	opt.	sp gas phase	iefpcm (toluene)	iefpcm (toluene)	corr.	corr.	corr.	cal/mol•K	298K	298K
TS1	14.2	-3.9	3.6	8.0	1.7	1.2	16.8	-52.2	9.2	24.8
TS2	18.2	-0.2	6.6	11.2	1.7	1.2	16.9	-52.9	12.4	28.1
TS3	16.0	-2.9	5.7	9.2	1.4	1.0	15.5	-48.9	10.2	24.8
TS4	16.4	-2.3	6.0	9.8	1.6	1.1	16.2	-50.9	10.9	26.0

Full reference 8 from paper b511992h:
All calculations were performed with the Gaussian03 program. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. lyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Sealmani, N. Rega, G. A. Petersson, H. Nakatsuij, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Iahida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. F. Startmann, O. Yazyev, J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorv, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanavakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision C.02), Gaussian, Inc., Wallingford, CT, 2004.

