SUPPORTING INFORMATION

for

Trapping of a tert-adamantyl peroxyl radical in the gas phase

David G. Harman and Stephen J. Blanksby*

Department of Chemistry, University of Wollongong, Wollongong NSW, 2522, Australia.

Address reprint requests to Dr Stephen J. Blanksby, Department of Chemistry, University of Wollongong, Wollongong NSW, 2522, Australia. E-mail blanksby@uow.edu.au

Supporting Information Figure 1. (a) The ESI-MS/MS spectrum of the $[M-2H]^{2-}$ dianion (*m/z* 111.2) formed by electrospray ionization 1,3-adamantane dicarboxylic acid (**A**, Scheme 1) and (b) The ESI-MS/MS spectrum of the $[M-H]^{-}$ anion (*m/z* 331.9) formed by electrospray ionization of 3-(*N*-oxycarbonyl-2(1*H*)-pyridinethione)-adamantane-1-carboxylic acid (**D**, Scheme 1).

Supporting Information Figure 2. Trapping of (a) the distonic radical anion, **C**, at m/z 178, (b) the even electron, [M-H]⁻ anion of 1,3-adamantane dicarboxylic acid at m/z 223 and (c) the 3-carboxylate-1-cyano-1-methyl-propyl radical anion formed by CID of the [M-2H]²⁻ ion of 4,4²-azobis(4-cyanopentanoic acid). All spectra shown are MS³ experiments conducted using the ThermoFinnigan LTQ ion-trap mass spectrometer with trapping times ranging from 30 up to 10⁴ ms. The radical anion, **C**, shows prominent addition of 32 Da to form m/z 210 while the analogous even electron anion does not form any such adduct upon trapping. The non-bridgehead 3-carboxylate-1-cyano-1-methyl-propyl radical anion at m/z 125 also shows addition of 32 Da to a lesser extent.

Supporting Information Figure 3. ESI-MSⁿ spectra obtained from m/z 332 (E, Scheme 1) formed by ESI of 3-(*N*-oxycarbonyl-2(1*H*)-pyridinethione)-adamantane-1-carboxylic acid (D, Scheme 1). The spectrum labelled 4 was obtained from the sequence m/z 332 (CID, MS²) \rightarrow 178 (+ O₂, MS³) \rightarrow 210 (isolation, MS⁴). The spectrum labelled 5 corresponds to CID of m/z 210 (MS⁵) resulting in regeneration of m/z 178, isolation of which (MS⁶) produces m/z 210. The spectra shown demonstrate that this sequence may be repeated up to MS¹¹ with addition and removal of O₂ repeated 3 times.

Supporting Information Figure 4. Molecular structures calculated at the HF/6-31+G(d) level of theory for: (a) the 1-adamantyl radical, (b) the charge tagged *tert*-adamantyl radical C, (c) the charge tagged *tert*-adamantyl peroxyl radical F, (d) the transition state for unimolecular ring opening of C, and (e) the ring opened isomer of C. The single point electronic energies of these structures were calculated at the B3LYP/6-31+G(d) level of theory and are presented in Supporting Information Table 1.

Supporting Information Methods

Materials and Sample Preparation

1,3-Adamantane dicarboxylic acid was obtained from Aldrich. 1,3-dicyclohexylcarbodiimide and sodium pyridine-2-thione *N*-oxide solution were obtained from Fluka. 4,4'-Azobis(4-cyanopentanoic acid), trade name Vazo 68, was obtained from Dupont. DMF was dried over 3 Å molecular sieves. *N*-hydroxypyridine-2-thione was prepared by the treatment of a 40% aqueous solution of the sodium salt according to an established method.¹

Preparation of 3-(N-Oxycarbonyl-2(1H)-pyridinethione)-adamantane-1-carboxylic acid

The desired target was prepared by adapting a procedure which produces a Barton ester from a carboxylic acid in one step.¹ A solution of 1,3-adamantane dicarboxylic acid (100 mg, 0.446 mmol) in 0.5 mL of dry DMF was stirred in the absence of light at 0°C while a solution of 1,3-dicyclohexylcarbodiimide (94 mg, 0.456 mmol) and *N*-hydroxypyridine-2-thione (55 mg, 0.43 mmol) in 1.5 mL of dry DMF was added dropwise. When the addition was complete, the solution was allowed to warm to room temperature and stirred for a further 8 hr. The resulting suspension was filtered to remove dicyclohexylurea, and the precipitate rinsed with 2 mL of DMF. The filtrate was treated with 15 mL of H₂O, which caused precipitation of a yellow crystalline solid. This was filtered, washed with 10 mL of cold water and dried under high vacuum overnight, yielding a mass of 110 mg (0.330 mmol, 77% crude). An analytical sample was obtained by flash chromatography of a small quantity on silica, eluting with 20-40% EtOAc in CHCl₃ (Rf 0.35, 30% EtOAc in CHCl₃), mp 172.5-173.5°C (dec.). ¹H NMR (500 MHz, CD₃SOCD₃) δ 1.76 (s, br, 2H), 2.08-2.11 (m, 8H), 2.26 (s, br, 2H), 2.44 (s, br, 2H), 6.88 (ddd, 1H), 7.43 (ddd, 1H), 7.54 (dd, 1H), 8.34 (dd, 1H), 12.20 (s, br, 1H).

Instrumentation

All experiments were performed on a ThermoFinnigan LTQ (Waltham, MA) quadrupole linear ion-trap mass spectrometer fitted with a conventional IonMax electrospray ionization source and operating Xcalibr software. Spectra were obtained by infusion (3-10 μ L/min) of a standard solution (~10 μ M in HPLC grade methanol or aqueous acetonitrile, 1% aqueous ammonia was added in some instances to achieve a pH ~ 10), typical settings were; spray voltages between -4-5 kV, capillary temperature 200-250 °C, sheath and auxiliary gas flow rates set at 10 and 2 (arbitrary units), respectively. For CID experiments, ions were mass selected using a window of 1-5 Da (depending upon the number of MS cycles), using a Q-parameter of 0.25, fragmentation energy was typically 15-30 (arbitrary units) and an excitation time of 30 ms. For ion-trapping and ion-molecule reaction experiments the fragmentation energy was maintained at 0 while the excitation time (or reaction time) was varied between 30 ms and 10000 ms.

Electronic Structure Calculations

Geometry optimizations were carried out with the Hartree-Fock method using the modest 6-31+G(d) basis set within the GAUSSIAN03 suite of programs.² All stationary points on the potential energy surface were characterized as either minima (no imaginary frequencies) or transition states (one imaginary frequency) by calculation of the frequencies using analytical gradient procedures and single point energies were determined at the Becke3LYP/6-31+G(d) level.^{3, 4} Frequency calculations provided zero-point energies, which were corrected by the empirical scaling factor of 0.89 and added to the calculated electronic energy.⁵ The minima connected by a given transition state were confirmed by inspection of the animated imaginary frequency using the MOLDEN package⁶ and by intrinsic reaction coordinate calculation.

Supporting Information Additional References

- 1. D. H. R. Barton, J. MacKinnon, R. N. Perchet and C. L. Tse, in *Organic Syntheses, Collective Volumes*, ed. R. L. Danheiser, John Wiley & Sons, New York, 2004, vol. 10, p. 273.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian 03, Revision C.02*, (2004) Gaussian Inc., Wallingford CT.
- 3. A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- 4. C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- 5. A. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502-16513.
- 6. G. Schaftenaar and J. H. Noordik, J. Comput.-Aided Mol. Design, 2000, 14, 123-134.

Supporting Information Table 1. The electronic energy and zero-point energy of HF/6-31+G(d) optimized structures shown in Supporting Information Figure 4. Single point electronic energies were calculated at B3LYP/6-31+G(d) level of theory. Full structural details are provided in Supporting Information Table 2.

Molecular Species	Electronic Energy	Zero-point energy	Relative energy	Negative
	(Hartrees)	(Hartrees)	(kJ mol ⁻¹)	Frequency (cm ⁻¹)
,	-390.06569	0.24680	0.0	-
	-390.021527	0.24133	103.2 [†]	-482
	-390.04162	0.24104	49.7 [†]	-
co_2^- C m/z 178	-578.09272	0.24833	0.0	-
\mathbf{F} m/z 210	-728.48566	0.25804	-	-
CO ₂	-578.05804	0.24389	80.7 [‡]	-493
. CO2-	-578.07672	0.24410	7.7 [‡]	-

[†]Energy relative to row 1, [‡]Energy relative to row 4

Supporting Information Table 2. The full Cartesian coordinates of HF/6-31+G(d) optimized

geometries shown in Supporting Information Figure 4.

Molecular Species	Carte	sian Coo	ordinates c	of Optimize	ed Structure
		atomic			
		number	х	У	Z
	1	6	-0.842826	1.179843	-0.982693
	2	1	-1.443899	2.021265	-0.643518
•	3	1	-0.858712	1.20208	-2.070628
*	4	6	-1.450528	-0.140699	-0.477007
	5	1	-2.46994	-0.23958	-0.843051
()	6	6	0.603415	1.326543	-0.477008
	7	1	1.027487	2.25882	-0.843053
	8	6	0.600654	1.320474	1.071831
	9	1	0.018742	2.157718	1.449659
	10	1	1.614143	1.432005	1.449658
	11	6	-1.443891	-0.140055	1.071832
	12	1	-1.878009	-1.062628	1.44966
	13	1	-2.047224	0.681887	1.44966
	14	6	0	0	1.492544
	15	6	0.843237	-1.180419	1.071832
	16	1	1.859268	-1.095089	1.449659
	17	1	0.433081	-2.113891	1.449659
	18	6	-0.600362	-1.319831	-0.982692
	19	1	-0.611678	-1.344707	-2.070627
	20	1	-1.028517	-2.261085	-0.643517

21

22

23

24

25

6

1

1

6

1

1.443188

1.47039

2.472416

0.847113

1.442452

0.139987

0.142625

0.23982

-1.185845

-2.01924

-0.982692

-2.070627

-0.643516 -0.477008

-0.843052

	atomic			
	number	Х	У	Z
1	6	0.421843	0	1.58884
2	6	-1.759337	0	1.041821
3	6	-1.47643	0	-0.32189
4	1	-2.052276	0.910019	1.537266
5	1	-2.052275	-0.91002	1.537266
6	6	-0.888874	1.262313	-0.905273
7	6	0.627521	1.260302	-0.598538
8	6	0.881565	1.280098	0.921932
9	6	1.265323	0	-1.205868
10	6	0.627521	-1.260301	-0.598539
11	6	0.881566	-1.280098	0.921932
12	6	-0.888874	-1.262313	-0.905274
13	1	-1.357043	-2.146056	-0.480274
14	1	-1.040846	-1.303066	-1.981908
15	1	-1.040847	1.303066	-1.981908
16	1	-1.357043	2.146056	-0.480274
17	1	1.08011	-2.145172	-1.040523
18	1	1.13443	0	-2.28632
19	1	2.337999	0	-1.020942
20	1	1.08011	2.145173	-1.040522
21	1	1.952876	1.416307	1.093109
22	1	0.39192	2.139754	1.373931
23	1	0.391921	-2.139754	1.373931
24	1	1.952876	-1.416307	1.093108
25	1	0.427147	0	2.669205

	atomic			
	number	Х	У	Z
1	6	0.945783	1.272708	-0.596559
2	6	1.535876	0	-0.030329
3	6	0.945783	-1.272708	-0.59656
4	6	-0.594289	-1.255612	-0.631808
5	6	-1.077201	0	-1.370613
6	6	-0.594289	1.255612	-0.631807
7	6	-1.221227	1.300844	0.772856
8	6	-1.076896	0	1.512522
9	6	-1.221227	-1.300845	0.772855
10	6	2.515684	0	0.864715
11	1	2.932974	-0.916062	1.246991
12	1	2.932975	0.916061	1.246991
13	1	1.303872	2.133523	-0.040224
14	1	1.301933	1.389685	-1.620524
15	1	1.301932	-1.389684	-1.620525
16	1	1.303871	-2.133523	-0.040225
17	1	-0.920445	2.138693	-1.176187
18	1	-0.701774	0.000001	-2.392096
19	1	-2.163579	0.000001	-1.435971
20	1	-0.920446	-2.138692	-1.176188
21	1	-2.282178	-1.546314	0.662601
22	1	-0.786313	-2.111043	1.35321
23	1	-0.786313	2.111043	1.353211
24	1	-2.282178	1.546314	0.662601
25	1	-1.182317	-0.000001	2.584698

·	otomic			
	atomic	~	.,	-
1	number	1 247250	1 40C2F	0 172020
1	0	-1.34/359	1.40025	-0.173038
2	6	-1.868/94	0.4/40/	-1.2/9922
3	6	-1.308172	-0.943433	-1.076004
4	6	-1.77657	-1.474533	0.300687
5	6	-1.229064	-0.517435	1.333401
6	6	-1.818846	0.866494	1.199079
7	1	-1.673003	-1.599473	-1.867186
8	6	0.229588	-0.89966	-1.100159
9	1	-2.865185	-1.522206	0.338546
10	1	-1.398077	-2.481929	0.459296
11	6	0.279445	-0.50953	1.374027
12	1	-2.907888	0.843051	1.245806
13	1	-1.471035	1.521126	1.995652
14	1	-1.741579	2.411372	-0.327241
15	6	0.191697	1.438366	-0.205332
16	1	-2.959912	0.453652	-1.276145
17	1	-1.563894	0.853824	-2.254051
18	6	0.781468	0.0309	0.0022
19	1	0.642793	-1.892888	-0.964994
20	1	0.537625	1.838945	-1.153373
21	1	0.648426	0.130265	2.173468
22	1	0.686787	-1.500977	1.534041
23	1	0.570963	2.108871	0.559354
24	1	0.570281	-0.547223	-2.073232
25	6	2.342921	0.017499	-0.024687
26	8	2.904512	1.107875	-0.172789
27	8	2.853715	-1.101666	0.111357

F *m*/*z* 210

	atomic			
	number	х	у	Z
1	6	0.52532	1.426509	-1.2695
2	6	0.596685	2.381083	-0.068254
3	6	0.366347	1.585129	1.224795
4	6	1.456885	0.510029	1.357766
5	6	1.621279	0.356202	-1.13263
6	1	0.422856	2.25355	2.082994
7	6	-1.011239	0.907277	1.177767
8	1	2.445809	0.963121	1.401838
9	1	1.319202	-0.061169	2.271702
10	6	0.009763	-1.114217	0.117613
11	1	2.61013	0.812013	-1.100241
12	1	1.598216	-0.316278	-1.984065
13	1	0.69202	1.985471	-2.189425
14	6	-0.85491	0.749632	-1.313173
15	1	1.564406	2.883498	-0.037776
16	1	-0.160799	3.156527	-0.165682
17	6	-1.104774	-0.053406	-0.025873
18	1	-1.196454	0.352279	2.09075
19	1	-1.635856	1.492375	-1.435079
20	1	-0.030201	-1.80737	-0.717435
21	1	-0.147378	-1.685978	1.023898
22	1	-0.926073	0.092493	-2.174372
23	1	-1.791858	1.662368	1.101062
24	6	-2.500375	-0.758199	-0.013716
25	8	-3.242909	-0.527035	-0.972265
26	8	-2.709904	-1.469455	0.976208
27	8	2.441071	-1.383684	0.381026
28	8	2.556919	-2.264328	-0.563406
29	6	1 374114	-0 427853	0 155093

	atomic			
	number	х	у	Z
1	8	2.896233	-1.116037	0.022755
2	8	2.896342	1.116001	0.022753
3	6	2.365618	0.00001	-0.06652
4	6	0.853638	0.000063	-0.290972
5	6	0.125347	-0.000267	1.801988
6	6	-1.223903	-0.000235	1.450426
7	1	0.613953	0.909165	2.105366
8	1	0.614014	-0.909773	2.105046
9	6	-1.760722	1.260184	0.813593
10	6	-1.329945	1.256888	-0.672371
11	6	0.206185	1.273292	-0.798345
12	6	-1.892682	0.000209	-1.354249
13	6	-1.32992	-1.256679	-0.67278
14	6	0.206208	-1.273013	-0.798755
15	6	-1.76069	-1.26046	0.813184
16	1	-1.371509	-2.145173	1.310863
17	1	-2.848688	-1.30221	0.879651
18	1	-2.84872	1.301889	0.880069
19	1	-1.371561	2.144745	1.311558
20	1	-1.734518	-2.144713	-1.159594
21	1	-2.982941	0.000191	-1.307043
22	1	-1.623529	0.000384	-2.409885
23	1	-1.734559	2.145071	-1.158901
24	1	0.465951	1.404415	-1.853603
25	1	0.630339	2.125525	-0.282023
26	1	0.630386	-2.125399	-0.28271
27	1	0.465975	-1.403781	-1.854061

	atomic			
	number	х	у	Z
1	6	-1.700535	0.565024	1.273492
2	6	-1.404714	1.326138	-0.000026
3	6	-1.700474	0.564993	-1.273521
4	6	-1.149877	-0.874456	-1.251784
5	6	-1.665437	-1.595328	0.000017
6	6	-1.149888	-0.87442	1.251802
7	6	0.388045	-0.923378	1.288473
8	6	1.032044	-0.4879	0.000001
9	6	0.388058	-0.923433	-1.288461
10	6	2.421679	0.121788	0.000009
11	8	2.916027	0.336359	-1.116926
12	6	-0.932378	2.565905	-0.000025
13	8	2.916026	0.336339	1.116947
14	1	-0.706239	3.084307	-0.916171
15	1	-0.706501	3.084384	0.916142
16	1	-1.309122	1.105562	2.129919
17	1	-2.784655	0.51063	1.39829
18	1	-2.784592	0.510656	-1.398395
19	1	-1.308978	1.105481	-2.129943
20	1	-1.531079	-1.380696	2.138807
21	1	-2.756331	-1.624631	0.000021
22	1	-1.3219	-2.628778	0.000021
23	1	-1.531109	-1.38072	-2.138778
24	1	0.682446	-1.956141	-1.510066
25	1	0.780037	-0.322642	-2.099417
26	1	0.780004	-0.32253	2.099397
27	1	0.682457	-1.956067	1.510138